State of Colorado # Technical Support Document # For Recommended 8-Hour Ozone Designations Colorado Air Quality Control Commission Adopted September 15, 2016 Colorado Department of Public Health and Environment Air Pollution Control Division 4300 Cherry Creek Drive South Denver, Colorado 80246 # **Table of Contents** | | · | |--|--------------| | Designation Recommendation | | | Nonattainment Boundary Recommendation | | | DM/NFR Overview | | | | | | Factor # 1: Air Quality Data | | | Table 1-1: Ozone Monitoring Sites for the DM/NFR Region Table 1-1: Ozone Monitoring Data for the DM/NFR Region | | | Figure 1-3: Western Denver Metro Area - 8-hour (4 th Max) Ozone Values | | | Figure 1-4: North, South and East Denver Metro Area - 8-hour (4 th Max) Ozone Values | | | Figure 1-5: North Front Range Area - 8-hour (4 th Max) Ozone Values | | | Air Quality Data Conclusions | | | Factor # 2: Emissions and Emissions-Related Data | | | Table 1-2: 2011 Ozone Precursor Emissions Data for DM/NFR Nonattainment Area Coun | | | Table 1-3: 2011 Ozone Precursor Emissions Data for Counties nearby the DM/NFR regio | | | Figure 1-6: 2011 Emissions In and Nearby the 9-County Nonattainment Area | | | Figure 1-7: 2011 DM/NFR NO_x Emissions and Point Sources | | | Figure 1-8: 2011 DM/NFR VOC Emissions and Point Sources | | | Emissions Data Conclusions | | | Population Density and Degree of Urbanization | | | Figure 1-9: Population Density & Degree of Urbanization of the NE Colorado Region (20 | | | Figure 1-10: 2010-2014 Regional Population Density for Denver Metro Area | | | Figure 1-11: 2012 Household Density for North Front Range Area | | | Table 1-4: County-Level Population and Calculated Population Density | | | Table 1-6: 2010 Color ado Metropolitan/Micropolitan/sidusical Areas (CBSA) | | | Figure 1-12: 2013 CSAs and CBSAs and Counties in Colorado | | | Population Density and Degree of Urbanization Conclusions | | | Traffic and Commuting Patterns. | | | Figure 1-13: CDOT Traffic Volume in North Front Range Area | | | Figure 1-14: CDOT Traffic Volume in Estes Park Area | | | Figure 1-15: CDOT Traffic Volume in Boulder Area | | | Figure 1-16: CDOT Traffic Volume in Denver Metro Area | | | Figure 1-17: CDOT Traffic Volume in Greeley Area | | | Figure 1-18: CDOT Traffic Volume in Bennett Area | | | Figure 1-19: Number of Workers Commuting between Denver Region and Neighboring Co | | | Table 1-7: County-Level Annual Average Vehicle Miles Travelled | | | Table 1-8: Number of Trips Between Residence and Workplace for Counties within the Der | | | Traffic and Commuting Patterns Conclusion | | | Growth Rates and Patterns | | | Table 1-9: Recent Population Estimates for Denver Metro Area, North Front Range and N | 0 | | CountiesTable 1-10: Population Projections for Denver Metro Area, North Front Range and Neigh | | | Table 1-10. Fopulation Projections for Denver Metro Area, North Front Kange and Neight
Table 1-11: Population Percent Change Projections for Denver Metro Area, North Front I | | | Neighboring Counties | | | Growth Rates and Patterns Conclusions | | | Factor #3: Meteorology | | | Figure 1-20: Nighttime Drainage Flows (Red Arrows) into the Platte Valley or Basin | | | rigure 1-20. Nightime Dramage Flows (Rea Arrows) into the Flatte valley or Dasin | | | | | | Colorado Recommended 8-hour Ozone Designations | Page 2 of 9. | | Table 2-1: Ozone Monitoring Data for AQCR 11. Figure 2-8: AQCR 11-8-hour (4 th Max) Ozone Values. Figure 2-9: Uinta Basin-8-hour (4 th Max) Ozone Values. Air Quality Data Conclusions. Factor #2: Emissions and Emissions-Related Data Table 2-2: 2011 Ozone Precursor Emissions Data for AQCR 11 and Surrounding And Figure 2-10: 2011 Ozone Emissions for AQCR 11 and Surrounding Areas. Figure 2-11: NW CO and NE Utah NO _x Emissions Map. Figure 2-12: NW CO and NE Utah VOC Emissions Map. Emissions Data Conclusions. Population Density and Degree of Urbanization Figure 2-13: CBSAs and CSAs and Counties in Colorado. Figure 2-14: Population Density and Degree of Urbanization of NW Colorado and Accolorado Recommended 8-hour Ozone Designations | 58 58 59 60 60 61 61 | |---|-----------------------------| | Figure 2-8: AQCR 11-8-hour (4 th Max) Ozone Values | 58 58 59 60 60 61 61 | | Figure 2-8: AQCR 11-8-hour (4 th Max) Ozone Values | 58 58 59 60 60 61 61 | | Figure 2-8: AQCR 11-8-hour (4 th Max) Ozone Values | 58 58 59 60 60 61 61 | | Figure 2-8: AQCR 11-8-hour (4 th Max) Ozone Values | 58 59 60 60 61 | | Figure 2-8: AQCR 11-8-hour (4 th Max) Ozone Values | | | Figure 2-8: AQCR 11-8-hour (4 th Max) Ozone Values | | | Figure 2-8: AQCR 11-8-hour (4 th Max) Ozone Values | | | Figure 2-8: AQCR 11-8-hour (4 th Max) Ozone Values | | | Figure 2-8: AQCR 11- 8-hour (4 th Max) Ozone Values
Figure 2-9: Uinta Basin- 8-hour (4 th Max) Ozone Values
Air Quality Data Conclusions
Factor #2: Emissions and Emissions-Related Data | | | Figure 2-8: AQCR 11- 8-hour (4 th Max) Ozone Values | 58
58 | | Figure 2-8: AQCR 11- 8-hour (4 th Max) Ozone Values | 58 | | Table 2-1: Ozone Monitoring Data for AQCR 11
Figure 2-8: AQCR 11- 8-hour (4 th Max) Ozone Values | | | Table 2-1: Ozone Monitoring Data for AOCR 11 | 58 | | | 57 | | Figure 2-7: Ozone Monitoring Sites for AQCR 11 and Utah | 56 | | Factor #1: Air Quality Data | | | Figure 2-6: Piceance/Uinta Basins Well Location Map | | | Figure 2-4: Colorado Piceance Basin Well Location Map
Figure 2-5: Utah Uinta Basin Well Location Map | | | Figure 2-3: Uinta/Piceance Basin Map
Figure 2-4: Colorado Piceance Basin Well Location Map | | | Figure 2-2: Utah/Colorado Tribal Lands Map | | | Figure 2-1: Rangely Location | | | Rangely Area Overview | | | Designation Recommendation | | | Ozone Attainment | | | SECTION 2: Rangely Area of Rio Blanco County – Five Fac | • | | • | | | Summary Conclusions for DM/NR 8-hour Nonattainment Area | | | Level of Control of Emission Sources | | | Factor #5: Jurisdictional Boundaries | | | Geography/Topography Conclusion | | | Figure 1-31: Topographic Illustration of physical barriers that define the Denver Bo
Figure 1-32: Topographic illustration of physical barriers that define the Denver Bo | | | Figure 1-31: Topographic Illustration of Physical Barriers that define the Denver B | | | Factor #4: Geography/Topography | | | Meteorology References | | | Approximately 13:30 MST for June 1 through August 31, 2015 | | | Collins West, Rocky Flats, NREL, and ChatfieldFigure 1-30: Mean OMI Tropospheric Column NO_2 in 10^{15} Molecules per Square C | 43
entimeter for | | Figure 1-29: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in | 2013 to 2015 for Fort | | Collins West, Rocky Flats, NREL, and Chatfield | | | Figure 1-28: HYSPLIT Back-Trajectory for the Four Highest Days for Each year in | | | for Fort Collins West, Rocky Flats, NREL, and Chatfield | 41 | | Figure 1-27: Composite HYSPLIT Back-Trajectory for the Four Highest Days for E | ach Year in 2013 to 2015 | | Chatfield | | | | 39
2013 to 2015 for | | Figure 1-25: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in | | | | | | Flats | 2013 to 2015 for Rocky | | Figure 1-24: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in | 37 | | Collins WestFigure 1-24: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in | 30
2013 to 2015 for Fort | | Figure 1-23: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in
Collins WestFigure 1-24: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in | 2.0 | | Collins WestFigure 1-24: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in | | | Figure 1-23: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in
Collins WestFigure 1-24: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in | | | Table 2-3: County-Level Population | | |--|--| | Population Density and Degree of Urbanization Conclusions | | | Traffic and Commuting Patterns | | | Figure 2-15: CDOT Traffic Volume in AQCR 11 | | | Traffic and Commuting Patterns Conclusions | | | Growth Rates and Patterns | | | Table 2-4: Population Projections for AQCR 11 | 65 | | Table 2-5: Annual Population Percent Change Projections for AQCR 11 | | | Growth Rates and Patterns Conclusions | | | Factor #3: Metrological Data | | | Figure 2-16: Daily max 8-hour ozone Contours in ppb and Site Concentrations in and | 'Near the Uinta Basin | | on February 14, 2011
Figure 2-17: Hourly Ozone Concentrations in ppb from February 3 through 16, 2011,
Near the Uinta Basin | for Select Sites in and | | Figure 2-18: NOAA LAPS Analysis Surface Potential Temperatures in Degrees K for 2011 | 13 MST February 14, | | Figure 2-19: NAM12 Analysis Run at 18z or 11 MST Showing Surface Potential Temp
Surface Winds at
the 800 mb Level for February 14, 2011, in Utah and Colorado | perature and Near- | | Figure 2-20: Hourly Ozone Concentrations in ppb at the Ouray and Redwash Monito Uinta Basin and Rangely, Colorado, from January 1 through March 31, 2013 | 70 | | Figure 2-21: NAM12 Analysis Run at 18z or 11 MST Showing Surface Potential Temp
Through Red Lines) and Near-Surface Winds at the 800 mb level for January 24, 2013 | , in Utah and Colorado | | Figure 2-22: NAM12 Analysis Run at 18z or 11 MST Showing Surface Potential Temp
(Blue Through Red Lines) and Near-Surface Winds at the 800 mb Level for January 25
Colorado | perature Contours
5, 2013, in Utah and | | Figure 2-23: NAM12 Analysis Run at 0z (January 27, 2013) or 17 MST (January 26, 2
Potential Temperature Contours (Blue Through Red Lines) and Near-Surface Winds at
Utah and Colorado. | 2013) Showing Surface
t the 800 mb Level in | | Figure 2-24: NAM12 Analysis Run at 18z or 11 MST Showing Surface Potential Temp
Through Red Lines) and Near-Surface Winds at the 775 mb Level for February 5, 2013
Colorado | 3, in Utah and | | Figure 2-25: NAM12 Analysis Run at 18z or 11 MST Showing Surface Potential Temp
Through Red Lines) and Near-Surface Winds at the 800 mb Level for February 6, 2013
Colorado | perature Contours (Blue
3, in Utah and | | Figure 2-26: WestJump Air Quality Modeling of Utah's 2008 Contribution to Regional Concentrations of 70 ppb or Higher | | | Figure 2-27: Western Air Quality Study 2011b Base Case VOC Emissions Inventory 1 Related Sources | Data for Oil and Gas
75 | | Figure 2-28: Mean OMI Satellite Tropospheric NO_2 in 10^{15} Molecules per Square Cer 1, 2012, through February 28, 2013 | | | Meteorological Conclusions | | | Factor #4: Geography/Topography | | | Figure 2-28: Rangely and Uinta Basin Elevation Map | | | Geography/Topography Conclusions | 77 | | Factor #5: Jurisdictional Boundaries | 77 | | Level of Control of Emission Sources | 77 | | Summary Conclusions for Rangely | 79 | | SECTION 3: Remainder of Colorado | 81 | | Designation Recommendation | | | Map of Ozone Monitor Locations. | | | Figure 3-1: Ozone Monitoring Sites for Areas Outside of the Denver Metro/North Fro | | | Ozone Monitoring Data from CDPHE and Other Agency Sites | | | Colorado Recommended 8-hour Ozone Designations | Page 4 of 91 | | <u>Technical Support Document</u> | | | Table 3-1: Ozone Monitoring Data for Areas Outside of the Denver Metro/North Front Range Region | 82 | |---|----| | Ozone Monitoring Trends for Areas Outside of the Denver Metro/North Front Range Regi | on | | | 83 | | Figure 3-2: Ozone Monitoring Trends for Southeastern Colorado | | | Figure 3-3: Ozone Monitoring Trends for Central Colorado | 84 | | Figure 3-4: Ozone Monitoring Trends for Southwestern Colorado | 84 | | Figure 3-5: Ozone Monitoring Trends for Western Colorado | 85 | | Figure 3-6: Ozone Monitoring Sites in Colorado Relative to AQCR's | 86 | | Figure 3-7: 2011 NO _x Emissions Map by County | 87 | | Figure 3-8: 2011 VOC Emissions Map by County | 87 | | Table 3-2: Ozone Precursor Emissions by AQCR in Colorado | 88 | | Population | 89 | | Table 3-3: Population by County | | | Summary Conclusions for Remainder of Colorado | 91 | Colorado Recommended 8-hour Ozone Designations <u>Technical Support Document</u> # **SECTION 1** # Denver Metro / North Front Range Region ## SECTION 1: DM/NFR Area – Five Factor Analysis for Ozone Nonattainment # **Designation Recommendation** The State recommends designating the current Denver Metro/North Front Range (DM/NFR) 8-hour nonattainment area (see Figure 1-1) as nonattainment for the 2015 revised 8-hour ozone standard (0.070 ppm). This recommendation is based on monitoring information that indicates the region is not in compliance with the 2015 8-hour ozone standard and the following five factor analysis that indicates the nonattainment boundary should remain unchanged: Figure 1-1: DM/NFR Existing 8-hour Ozone Nonattainment Area # **Nonattainment Boundary Recommendation** The State recommends that the proposed nonattainment area boundary for the revised 8-hour ozone standard should be identical to the current EPA-approved ozone nonattainment boundary for the 9-county area. This large area encompasses the region's 1) urbanized area, 2) traffic and commuting patterns, and 3) industrial and commercial activities. With the Rocky Mountains to the west, the Palmer Divide to the south, the Cheyenne Ridge to the north, and following the South Platte River valley to the northeast, the area is commonly referred to as the Denver Basin and serves as the topographic and climatological airshed for the region. The recommended boundary is as follows: Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 7 of 91 Adams County Arapahoe County Boulder County (including the portion of Rocky Mountain National Park therein) Broomfield County Denver County Douglas County Jefferson County Larimer County (part) including the portion of Rocky Mountain National Park therein and that portion of the county that lies south of a line described as follows: Beginning at a point on Larimer County's eastern boundary and Weld County's western boundary intersected by 40 degrees, 42 minutes, and 47.1 seconds north latitude, proceed west to a point defined by the intersection of 40 degrees, 42 minutes, 47.1 seconds north latitude and 105 degrees, 29 minutes, and 40.0 seconds west longitude, thence proceed south on 105 degrees, 29 minutes, 40.0 seconds west longitude to the inter-section with 40 degrees, 33 minutes and 17.4 seconds north latitude, thence proceed west on 40 degrees, 33 minutes, 17.4 seconds north latitude until this line intersects Larimer County's western boundary and Grand County's eastern boundary. Weld County (part): That portion of the county that lies <u>south of a line</u> described as follows: Beginning at a point on Weld County's eastern boundary and Logan County's western boundary intersected by 40 degrees, 42 minutes, 47.1 seconds north latitude, proceed west on 40 degrees, 42 minutes, 47.1 seconds north latitude until this line intersects Weld County's western boundary and Larimer County's eastern boundary. #### **DM/NFR Overview** The EPA recommends five criteria or "factors" to help with attainment/nonattainment determinations and, if necessary, to help determine the appropriate size of a nonattainment area. States must submit an analysis of these five factors, along with a proposed nonattainment boundary, for any areas that are not meeting the federal standard. The five factors to be addressed are: - 1. Air quality data - 2. Emissions and emissions-related data - 3. Meteorological data - 4. Geography/topography - 5. Jurisdictional boundaries Since ozone monitoring data in the 9-county area indicates nonattainment of the 2015 National Ambient Air Quality Standard (NAAQS), the following five factor analysis is necessary to support the conclusion that the existing nonattainment boundary is appropriate for the revised ozone standard. ## **Factor #1: Air Quality Data** Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 8 of 91 There are 16 ozone monitors (see Figure 1-2 and Table 1-1) currently operating in the DM/NFR region (including monitors operated by other agencies). The Highland monitor was not operational from October 1, 2014 to September 1, 2015 due to a renovation of an underground water storage tank on the site, but is now currently operational. The Rist Canyon monitoring site was discontinued in June of 2013 after meeting its monitoring objectives. Figure 1-2: Ozone Monitoring Sites for the DM/NFR Region Red= Current sites in operation Blue= Sites from past 10 years that are no longer in operation The monitoring data from 2013 to 2015 at the monitoring locations is shown in the table below. The monitors currently in violation of the revised 2015 standard are highlighted in red. Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 9 of 91 Table 1-1: Ozone Monitoring Data for the DM/NFR Region | | Denver Metro /I | | | | | |----------------------------|-----------------|---------------|-------|-------|-----------------| | | | | Year | | 3-Year Average | | Site Name | AQS# | 2013 | 2014 | 2015 | 2013-2015 (ppm) | | | CDPI | HE-APCD Site | :s | | | | Welby | 08-001-3001 | 0.077 | 0.067 | 0.069 | 0.071 | | Highland Reservoir | 08-005-0002 | 0.079 | - | NO. | 480 | | Aurora - East | 08-005-0006 | 0.073 | 0.067 | 0.068 | 0.069 | | South Boulder Creek | 08-013-0011 | 0.079 | 0.070 | 0.074 | 0.074 | | CAMP | 08-031-0002 | 0.067 | 0.061 | 0.067 | 0.065 | | La Casa | 08-031-0027 | 0.071 | 0.066 | 0.071 | 0.069 | | Chatfield State Park | 08-035-0004 | 0.083 | 0.074 | 0.081 | 0.079 | | Welch | 05-059-0005 | 0.080 | 0.066 | 0.075 | 0.073 | | Rocky Flats - N | 08-059-0006 | 0.085 | 0.077 | 0.077 | 0.079 | | NREL | 08-059-0011 | 0.084 | 0.076 | 0.081 | 0.080 | | Aspen Park | 08-059-0013 | 0.077 | 0.065 | 0.070 | 0.070 | | Ft. Collins - West | 08-069-0011 | 0.082 | 0.074 | 0.075 | 0.077 | | Rist Canyon | 08-069-0012 | 0.066 | - | - | legie. | | Ft. Collins - CSU | 08-069-1004 | 0.074 | 0.072 | 0.069 | 0.071 | | Weld County Tower | 08-123-0009 | 0.073 | 0.070 | 0.073 | 0.072 | | | Othe | r Agency Site | 2S | | | | NPS- Rock Mtn. NP | 08-069-0007 | 0.074 | 0.069 | 0.069 | 0.070 | | EPA Rocky Mountain NP | 08-069-9991 | 0.075 | 0.073 | 0.070 | 0.072 | | | Other Si | tes Near DM | /NFR | | | | U.S. Air Force Academy, CO | 08-041-0013 | 0.074 | 0.064 | 0.067 | 0.068 | | Manitou Springs, CO | 08-041-0016 | 0.072 | 0.062 | 0.065 | 0.066 | | Cheyenne NCore, WY | 56-021-0100 | 0.069 | 0.065 | 0.063 | 0.065 | | Centennial, WY | 56-001-9991 | 0.069 | 0.066 | 0.065 | 0.066 | The following figures provide historical trend data of the 8-hour ozone 4th maximum for the DM/NFR
region monitors. 8-Hour Ozone --- 4th Maximum Denver metro area (west) 0.100 (Level of 8-hr. NAAQS = 0.070 ppm) 0.095 Chatfield State Park 0.090 Parts per million -NREL 0.085 Rocky Flats-N 0.080 S. Bldr. Ck. 0.075 -Welch 0.070 Aspen Park 0.065 0.060 Year Figure 1-3: Western Denver Metro Area - 8-hour (4th Max) Ozone Values Figure 1-5: North Front Range Area - 8-hour (4th Max) Ozone Values # **Air Quality Data Conclusions** The monitoring data supports the recommended nonattainment designation for the current 8-hour ozone nonattainment area. If future monitoring locations indicate that additional counties or regions are in violation of the revised ozone standard, the existing nonattainment boundary will be revaluated and expanded as necessary. #### Factor # 2: Emissions and Emissions-Related Data Table 1-2 contains the 2011 emissions data for NO_x and VOC emissions for 16 source categories for the 9-county DM/NFR region from version 2 of the 2011 National Emissions Inventory (NEI). The emission sources are categorized into controllable and uncontrollable emissions. Biogenic, agricultural livestock waste and wildfire emissions comprise the uncontrolled emission sources. The emissions data for Larimer and Weld Counties includes the whole county and does not apportion emissions originating from the proposed nonattainment area portion of these counties. Consequently, the Division analyzed the ozone nonattainment area NOx and VOC emissions with the total county emissions to determine the percentage of NOx and VOC emissions that are attributed to the northern portions of Larimer and Weld Counties. Based on this analysis, the northern portions of Larimer and Weld Counties (excluding nonattainment area) comprise about 26.4% and 13.9% of the 2011 NO_x and VOC emissions respectively. Accordingly, the controllable emissions from portions of Larimer and Weld Counties that are excluded from the proposed nonattainment area are estimated as follows: Larimer County (northern portion excluding NAA): NOx = 2,879 tpy; VOC = 3,076 tpy Weld County (northern portion excluding NAA): NOx = 8,042 tpy; VOC = 18,610 tpy Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 12 of 91 Table 1-2: 2011 Ozone Precursor Emissions Data for DM/NFR Nonattainment Area Counties | | | ams | Arapa | hoe | Bour | der | Broom | field | Der | wer | Dou | glas | Jeffe | rson | Lari | nier | VV. | eld | |--------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|----------|-----------|-----------|-----------------------|------------|-----------|-----------|-----------|-----------|-----------|-----------| | Category | NO, (tpy) | VOC (tpy) | NO, (tpy) | VOC (tpy) | NO, (tpy) | VOC (tpy) | NO, (toy), V | OC (tpy) | NO. (25y) | VOC (tpy) | NO _x (toy) | VOC (toy). | NO, (tpy) | VOC (tpy) | VO, (tpy) | VOC (tpy) | NO, (tpy) | VOC (tpy) | | Agriculture Burning | 14 | 24 | 2 | 4 | 3 | 5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 18 | 28 | 199 | 307 | | Aircraft | 2 | 4 | 23 | 40 | 4 | 9 | 0 | 0 | 2,824 | 540 | 0 | 0 | 5 | 10 | 8 | 9 | 6 | 14 | | Commercial Cooking | 0 | 16 | 0 | 27 | 0 | 20 | 0 | 3 | 0 | 43 | 0 | 13 | 0 | 33 | 0 | 17 | 0 | 8 | | Electricity Generating Units | 9,105 | 62 | 129 | 10 | 2,106 | 17 | 99 | 6 | 2,133 | 21 | 2 | 0 | 13 | 5 | 1,896 | 40 | 789 | 100 | | Prescribed Fire | 16 | 171 | 0 | 0 | 31 | 660 | 0 | 0 | 0 | 0 | 0 | 6 | 10 | 203 | 571 | 12,130 | 37 | 601 | | Fuel Combustion | 2,599 | 856 | 1,592 | 900 | 918 | 758 | 12 | 76 | 1,814 | 1,007 | 458 | 388 | 2,303 | 904 | 857 | 792 | 6,773 | 2,589 | | Highway Vehicles | 8,763 | 4,522 | 8,397 | 5,643 | 3,972 | 2,671 | 1,111 | 579 | 9,618 | 5,543 | 5,082 | 2,478 | 8,825 | 5,607 | 5,914 | 3,375 | 6,668 | 3,239 | | Non-Road | 1,974 | 1,512 | 2,016 | 2,336 | 1,375 | 1,337 | 201 | 134 | 2,723 | 2,009 | 1,506 | 1,246 | 2,226 | 2,160 | 1,326 | 1,756 | 1,632 | 1,235 | | Oil and Gas Production | 448 | 2,480 | 63 | 387 | 161 | 1,145 | 68 | 667 | 20 | 106 | 0 | 0 | 0 | 4 | 79 | 691 | 12,478 | 104,473 | | Other Point Sources | 762 | 4,200 | 52 | 2,416 | 780 | 1,216 | 1 | 230 | 55 | 2,297 | 62 | 1,073 | 641 | 2,886 | 87 | 1,418 | 730 | 18,620 | | Railroads | 837 | 45 | 263 | 13 | 183 | 9 | 0 | 0 | 732 | 44 | 699 | 35 | 255 | 13 | 150 | 7 | 1,131 | 56 | | Solvent Utilization | 0 | 2,567 | 0 | 3,149 | 0 | 1,623 | 0 | 302 | 0 | 3,387 | 0 | 1,579 | 0 | 2,990 | 0 | 1,678 | 0 | 1,901 | | Surface Coating | 1 | 736 | 0 | 391 | 0 | 204 | 0 | 126 | 0 | 597 | 0 | 122 | 0 | 472 | 0 | 201 | 19 | 828 | | Total- Controllable | 24,521 | 17,195 | 12,538 | 15,317 | 9,533 | 9,674 | 1,492 | 2,125 | 19,920 | 15,593 | 7,809 | 6,933 | 14,279 | 15,287 | 10,905 | 22,142 | 30,463 | 133,972 | Biogenics | 724 | 5,044 | 484 | 4,064 | 201 | 9,155 | 60 | 658 | 122 | 1,551 | 212 | 10,212 | 78 | 11,342 | 582 | 30,323 | 2,233 | 17,006 | | Agriculture- Livestock Waste | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Wildfires | 0 | 3 | 0 | 0 | 30 | 667 | 0 | 0 | 0 | 0 | 27 | 239 | 49 | 759 | 90 | 1,333 | 1 | 4 | | Total- Uncontrollable | 724 | 5,048 | 484 | 4,064 | 231 | 9,823 | 60 | 658 | 122 | 1,551 | 239 | 10,451 | 127 | 12,100 | 672 | 31,656 | 2,233 | 17,010 | | <u> </u> | | · | | | | | | | | | | | | | | | | | | Total- Controllable + Uncontrollable | 25,245 | 22,243 | 13,022 | 19,381 | 9,764 | 19,497 | 1,552 | 2,783 | 20,042 | 17,144 | 8,048 | 17,384 | 14,406 | 27,388 | 11,577 | 53,798 | 32,696 | 150,982 | Table 1-3 includes the 2011 emissions data for NOx and VOC emissions for 16 source categories for the counties representing micropolitan and metropolitan statistical areas bordering the current DM/NFR region, including bordering Wyoming and Nebraska counties. Table 1-3: 2011 Ozone Precursor Emissions Data for Counties nearby the DM/NFR region | | Clear | / encl | | | 146 | | | | 100 E | an l | G (000 77) | | | | | | V/Y-1 | | 11.00 | | |--------------------------------------|----------|--------------|-----------|--------------|------------|---|-----------|-----------|-------|-----------|------------|--------------|----------|-----------|-----------|-----------|----------|--------------|------------|-------------| | Category | NO (spy) | Visit (1993) | ¥2, Itayi | sitic (they) | aus, (spy) | eck (tpy) | NO, (tpg) | vocation) | No. | Viscolary | | vijiC (1)ay) | NO. Chys | ves (toy) | 60, (thy) | VOC (Usy) | NO (197) | Verse Etalys | uto, etayi | vibic (194) | | Agriculture Burning | - 0 | - 6 | - 1 | 1 | 5 | 8 | 0 | 0 | 69 | 3.09 | 86 | 129 | . 0 | 0 | 0 | 0 | 18 | 29 | 0 | 0 | | Aircraft | 0 | 0 | 102 | 49 | 0 | 0 | 0 | 0 | 0 | - 1 | - 0 | 1 | 0 | 0 | 0 | 0 | 5 | - 20 | 0 | - 0 | | Commercial Cooking | -0 | 1 | 0 | 27 | 0 | 0 | 0 | 0 | - 0 | 1 | 0 | 1 | - 0 | 1. | 0 | 2 | 0 | 4 | 0 | - 0 | | Electricity Generating Units | - 5 | 0 | 5,435 | 107 | 0 | 0 | 0 | 0 | - 8 | 1 | 3,799 | 62 | - 6 | - 6 | 0 | 0 | 1 | 0 | 0 | 0 | | Prescribed Fire | 4 | 95 | 52 | 1,991 | | 23 | 2 | 45 | 2 | 22 | - 8 | 188 | 116 | 2,560 | 35 | 1,052 | | 23 | 0 | 1 | | Fuel Combustion | 51 | 19 | 1,573 | 1,515 | 103 | 37 | 21 | 11 | 711 | | 768 | 127 | 41 | 30 | 85 | 65 | 1,916 | 215 | 15 | 6 | | Highway Vehicles | 1,655 | 388 | 10,339 | 5,488 | 1.088 | 402 | | 106 | 963 | | 1,215 | 462 | 700 | 352 | 617 | 393 | 4,435 | 1,509 | 3,247 | 187 | | Non-Road | 35 | 93 | 2,223 | 1,923 | 124 | 106 | 100 | 47 | 413 | 139 | 356 | 152 | 99 | 397 | 83 | 321 | 456 | 319 | 224 | 35 | | Oil and Gas Production | 6 | -61 | 3 | | 33 | 227 | | 0 | 85 | 1,194 | 44 | 649 | 0 | () | 0) | 6 | 295 | 405 | 42 | 369 | | Other Point Sources | 36 | 81 | 100 | 2,202 | 0 | 151 | ō | 32 | -6 | 193 | 16 | 198 | 0 | 51 | 639 | 91 | 709 | 1,313 | 67 | 120 | | Railroads | 1 | 0 | 926 | 46 | 135 | | 178 | 9 | 1,009 | 52 | 784 | 39 | . 0 | 0 | 0 | 0 | 2.834 | 151 | 1,086 | 56 | | Solvent Stillization | 0 | | - 4 | -3,414 | 0 | 202 | 0 | - 29 | 0 | 245 | Q | 250 | 0 | 89 | 0 | 127 | 0 | 600 | 0 | 103 | | Surface Coating | 0 | 3 | | 472 | 0 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | 0 | 14 | 0 | 54 | (2 | 5
 | (6) | | 0 | 75 | 0 | 9 | | Total Controllable | 1,767 | 729 | 20,752 | 18,216 | 1,490 | 1,169 | 457 | 260 | 3,268 | 2,494 | 7,078 | 2,311 | 955 | 1,485 | 1,479 | 2,057 | 10,671 | 4,665 | 2,681 | 886 | | Biogenics | - 62 | 4,409 | 852 | 14,582 | 921 | 9,194 | 33 | 3,664 | 1,105 | 8,559 | 520 | 7,473 | 462 | 13,574 | 120 | 8,381 | 1.250 | 10,638 | 596 | 3,922 | | Agriculture- Livestock Waste | Q. | Q | 0 | 0 | 0 | 0 | Q | Q | 0 | :0 | O | . 0 | Ü | . O | 0 | 0 | 0 | 0 | ¢. | - 0 | | Wildfides | 0 | - 0 | 2 | 15 | 0 | O | | 4) | 1 | 13 | 0 | 0 | 23 | 339 | 1 | 16 | 0 | 2 | Ø | 2 | | Yotal- Uncontrollable | 62 | 4,409 | 87.3 | 14,507 | 921 | 9,194 | 33 | 3,664 | 1,106 | 8,572 | 930 | 7,475 | 483 | 13,913 | 121 | 8,397 | 1,250 | 10,640 | 596 | 3,924 | | Total- Controllable + Uncontrollable | 1,829 | 5,139 | 21,605 | 32,833 | 2,411 | 10,363 | 490 | 3,924 | 4,374 | 11,066 | 7,997 | 9,786 | 1,438 | 17,398 | 1,600 | 10,454 | 11,922 | 15,305 | 3,277 | 4,810 | A summary of the above tabular data is provided in the following graph. The county names highlighted in yellow are the 9 counties in the existing nonattainment area. Figure 1-6: 2011 Emissions In and Nearby the 9-County Nonattainment Area The NO_x and VOC emissions and the locations of small and large point stationary sources by county are shown in the two maps below (Figures 1-7 and 1-8). The current nonattainment boundary is shown with the thick, black line. Figure 1-7: 2011 DM/NFR NO_x Emissions and Point Sources Colorado Recommended 8-hour Ozone Designations Technical Support Document Figure 1-8: 2011 DM/NFR VOC Emissions and Point Sources ## **Emissions Data Conclusions** Precursor emissions outside of the current 8-hour ozone nonattainment area are substantially less than the emissions within the current nonattainment boundary. With the
exception of El Paso County, controllable precursor emissions in nearby counties are either very small by comparison or at substantial distances from high concentration monitors. For El Paso County, the State determined that this region is in a separate airshed and emissions do not significantly contribute to ozone concentrations in the recommended nonattainment area. Also, ozone monitoring in El Paso County indicates attainment of the revised 8-hour ozone standard (see U.S. Air Force Academy, CO and Manitou Springs, CO air monitoring data in Table 1-1). Therefore, the emissions information supports the recommended nonattainment designation and boundary for the current 8-hour ozone nonattainment area. If future emissions growth indicates that additional counties or regions should be included in the nonattainment area, the existing nonattainment boundary will be revaluated and expanded as necessary. ## **Population Density and Degree of Urbanization** ## Population Density In Figure 1-9 below, the population density and the degree of urbanization for NE Colorado, SE Wyoming and SW Nebraska is depicted based on the 2010 US Census. The nonattainment area Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 15 of 91 is highlighted in black and some peripheral counties are labeled that were also evaluated in the above emissions data section. Figure 1-9: Population Density & Degree of Urbanization of the NE Colorado Region (2010 Census) In Figure 1-10 and Figure 1-11, below, the regional population density for the Denver Metro Area and North Front Range Region are shown. DOUGLAS Nonctical Propulation Density Population Density More Dess ELBERT Less Diese Figure 1-10: 2010-2014 Regional Population Density for Denver Metro Area Figure 1-11: 2012 Household Density for North Front Range Area Source: NFRMPO 2012 - 2040 Land Use Allocation Model May, 2015 Table 1-4, below, shows the county level population, land area and calculated population density for the current nonattainment area, bordering counties and nearby micropolitan statistical areas. Table1-4: County-Level Population and Calculated Population Density | | Land Area | Population July 2010 | Calculated Population Density | Population July 2015 | Caluclated Population Density | Population | |-------------|---------------|----------------------|-------------------------------|----------------------|--------------------------------------|--------------| | County | (square mile) | (Estimate) | (people/sqaure mile) | (Estimate) | (people/sqaure mile) | Density Rank | | Adams | 1,192 | 443,680 | 372.2 | 491,337 | 412.2 | 6 | | Araphoe | 803 | 574,727 | 715.7 | 631,096 | 785.9 | 3 | | Boulder | 746 | 295,986 | 396.8 | 319,372 | 428.1 | 5 | | Broomfield | 28 | 56,271 | 2009.7 | 65,065 | 2323.8 | 2 | | Clear Creek | 395 | 9,083 | 23.0 | 9,303 | 23.6 | 14 | | Denver | 153 | 603,300 | 3943.1 | 682,545 | 4461.1 | 1 | | Douglas | 840 | 286,964 | 341.6 | 322,387 | 383.8 | 7 | | Elbert | 1,851 | 23,095 | 12.5 | 24,735 | 13.4 | 16 | | El Paso | 2,126 | 626,916 | 294.9 | 674,471 | 317.2 | | | Gilpin | 150 | 5,461 | 36.4 | 5,828 | 38.9 | 13 | | Grand | 1,847 | 14,783 | 8.0 | 14,615 | 7.9 | 18 | | Jackson | 1,613 | 1,385 | 0.9 | 1,356 | 0.8 | 22 | | Jefferson | 772 | 535,625 | 693.8 | 565,524 | 732.5 | 4 | | Larimer | 2,601 | 300,524 | 115.5 | 333,577 | 128.2 | 9 | | Lincoln | 2,586 | 5,469 | 2.1 | 5,557 | 2.1 | 20 | | Logan | 1,839 | 22,130 | 12.0 | 22,036 | 12.0 | 17 | | Morgan | 1,285 | 28,172 | 21.9 | 28,360 | 22.1 | 15 | | Park | 2,201 | 16,262 | 7.4 | 16,510 | 7.5 | 19 | | Summit | 608 | 28,065 | 46.2 | 30,257 | 49.8 | 11 | | Teller | 557 | 23,450 | 42.1 | 23,385 | 42.0 | 12 | | Washington | 2,521 | 4,801 | 1.9 | 4,864 | 1.9 | 21 | | Weld | 3,992 | 254,166 | 63.7 | 285,174 | 71.4 | 10 | | Total for NAA | 3,351,243 | 3,696,077 | |---------------|-----------|-----------| | Sum for Other | 809,072 | 861,277 | Note: NAA total includes the total populations for Weld and Larimer counties Counties in the current 8-hour ozone nonattainmentarea Top 10- Population Density # **CBSA** and **CSA** Analysis EPA suggests that because ground-level ozone and ozone precursor emissions are pervasive and readily transported, it is important to examine ozone-contributing emissions across a relatively broad geographic area. Accordingly, EPA states they will consider information associated with counties in Statistical Area (CBSA) or Combined Statistical Area (CSA) associated with a violating monitor(s). The following tables (Table 1-5 and Table 1-6) contain the CBSAs and CSAs for Colorado. The CBSAs and CSAs with violating monitors are highlighted in blue. Table 1-5: 2010 Colorado Metropolitan/Micropolitan Statistical Areas (CBSA) | | Colorado Metropolitan/Metropolitan Statistical Areas-Core | e Based Statistical Are | as (CBSA) | | | |-------|---|-----------------------------|--|--|--| | Code | Metropolitan/Micropolitan Statistical Areas | Principal Cities | Counties | | | | 14500 | Boulder, CO Metropolitan Statistical Area | Boulder | Boulder | | | | 14720 | Breckenridge, CO Micropolitan Statistical Area | Breckenridge | Summit | | | | 15860 | Cañon City, CO Micropolitan Statistical Area | Cañon City | Fremont | | | | 17820 | Colorado Springs, CO Metropolitan Statistical Area | Colorado Springs | El Paso , Teller | | | | 18780 | Craig, CO Micropolitan Statistical Area | Craig | Moffat | | | | 19740 | Denver-Aurora-Lakewood, CO Metropolitan Statistical Area | Denver, Aurora,
Lakewood | Adams , Arapahoe ,
Broomfield , Clear Creek,
Denver , Douglas , Elbert,
Gilpin , Jefferson , Park | | | | 20420 | Durango, CO Micropolitan Statistical Area | Durango | La Plata | | | | 20780 | Edwards, CO Micropolitan Statistical Area | Edwards | Eagle | | | | 22660 | Fort Collins, CO Metropolitan Statistical Area | Fort Collins | Larimer | | | | 22820 | Fort Morgan, CO Micropolitan Statistical Area | Fort Morgan | Morgan | | | | 24060 | Glenwood Springs, CO Micropolitan Statistical Area | Glenwood Springs | Garfield, Pitkin | | | | 24300 | Grand Junction, CO Metropolitan Statistical Area | Grand Junction | Mesa | | | | 24540 | Greeley, CO Metropolitan Statistical Area | Greeley | Weld | | | | 33940 | Montrose, CO Micropolitan Statistical Area | Montrose | Montrose | | | | 39380 | Pueblo, CO Metropolitan Statistical Area | Pueblo | Pueblo | | | | 44460 | Steamboat Springs, CO Micropolitan Statistical Area | Steamboat Springs | Routt | | | | 44540 | Sterling, CO Micropolitan Statistical Area | Sterling | Logan | | | Italics= Central Counties Areas with violating monitors Table 1-6: 2010 Colorado Combined Statistical Areas | | Colorado | Combined Statistical Areas (CSA) | | |------|------------------------------|---|---| | Code | Combined Statistical Area | CBSA's Included in CSA | Counties | | 216 | Denver-Aurora, CO | Boulder, CO Metropolitan Statistical
Area, Denver-Aurora-Lakewood, CO
Metropolitan Statistical Area, Greeley,
CO Metropolitan Statistical Area | Adams, Arapahoe,
Boulder, Broomfield,
Clear Creek, Denver,
Douglas, Elbert, Gilpin,
Jefferson, Park, Weld | | | | Edwards, CO Micropolitan Statistical
Area, Glenwood Springs, CO | | | 233 | Edwards-Glenwood Springs, CO | Micropolitan Statistical Area | Eagle, Garfield, Pitkin | | 444 | Pueblo-Cañon City, CO | Cañon City, CO Micropolitan Statistical
Area, Pueblo, CO Metropolitan
Statistical Area | Fremont, Pueblo | | 525 | Steamboat Springs-Craig, CO | Craig, CO Micropolitan Statistical Area,
Steamboat Springs, CO Micropolitan
Statistical Area | Moffat, Routt | Areas with violating monitors As shown in the two tables above, CSAs and CBSAs with violating monitors (highlighted in red in Figure 1-12 below) includes one CSA (Denver-Aurora CSA, highlighted in blue in Figure 1-12) and one CBSA (Fort Collins, CO Metropolitan Statistical Area). The Denver-Aurora CSA includes Adams, Arapahoe, Boulder, Broomfield, Clear Creek, Denver, Douglas, Elbert, Gilpin, Jefferson, Park and Weld counties. The Fort Collins, CO Metropolitan Statistical Area CBSA comprises Larimer County. Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 20 of 91 Figure 1-12: 2013 CSAs and CBSAs and Counties in Colorado Although, EPA recommends that any CSA or CBSA with a violating monitor should be examined, they also state that area-specific analyses should be used to support designations recommendations. The State recommends that although Clear Creek, Elbert, Gilpin, Park and the northern portions of Larimer and Weld counties are part of the violating CSA, they should not be included in the ozone nonattainment area. Additionally, in the past, EPA has requested further explanation from the State regarding the inclusion of Morgan County in the nonattainment area boundary, and the State recommends it not be included in the nonattainment area. The basis of recommendation for the exclusion of Clear Creek, Elbert, Gilpin, Park, northern portions of Larimer and Weld, and Morgan County is detailed below. # Clear Creek and Gilpin Counties The counties of Clear Creek and Gilpin are lightly populated areas located in high elevation mountainous terrain outside of the existing ozone nonattainment area. Based on the information in Table 1-4, the estimated 2015 population density for Clear Creek and Gilpin Counties are 23.6 and 38.9 people per square mile respectively. The total estimated 2015 population residing in Clear Creek and Gilpin Counties is 9,303 and 5,828 people
respectively. Compared to the 3.7 Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 21 of 91 million (2015) people residing in the existing DM/NFR nonattainment area, these two counties represent less than 0.5 percent of the total population for the area. The combined ozone precursor emissions (NO_x and VOC) for both counties are about 11,400 tons/year from all source categories with only 3,200 tons/year being attributed to controllable sources (excludes uncontrollable emissions: biogenic, agricultural livestock waste and wildfire emissions). There are no stationary point sources in Clear Creek or Gilpin Counties with ozone precursor emissions over 100 tons/year (see Figures 1-7 and 1-8). The back trajectory analyses below (Figures 1-23 – 1-29) indicate that Clear Creek and Gilpin Counties are infrequent contributors to air quality in the DM/NFR nonattainment area. This is indicated by the low number of trajectory points in the grid cells over Clear Creek and Gilpin Counties. In summary, the inclusion of Clear Creek and Gilpin Counties into the ozone nonattainment area is not warranted because of low population, low degree of urbanization, very low precursor emissions, and infrequent contributions to air quality in the DM/NFR. ## Elbert and Park Counties The counties of Elbert and Park are lightly populated areas outside of the existing ozone nonattainment area. Based on the information in Table 1-4, the estimated 2015 population density for Elbert and Park Counties are 13.4 and 7.5 people per square mile respectively. The total estimated 2015 population residing in Elbert and Park Counties is 24,735 and 16,510 people respectively. Compared to the 3.7 million (2015) people residing in the existing DM/NFR nonattainment area, these two counties represent less than 1.1 percent of the total population for the area. Information from the State Demography Office indicates that the 2014 population estimates for the towns of Elizabeth and Kiowa are 1,395 and 739 persons respectively. Bailey is an unincorporated town that is not tracked as a municipality by the State Demography Office, although a Google search yielded population data for 2009 indicating that 8,859 people reside in the Bailey ZIP code (80421). The combined ozone precursor emissions (NO_x and VOC) for Elbert and Park Counties are about 12,800 tons/year and 18,800 tons/year from all source categories respectively. Of the total emissions only 2,700 tons/year and 4,400 tons/year are due to controllable emission sources (excludes uncontrollable emissions: biogenic, agricultural livestock waste and wildfire emissions) for Elbert and Park Counties respectively. There are no stationary point sources in Elbert or Park Counties with ozone precursor emissions over 100 tons/year. The back trajectory analyses below (Figures 1-23-1-29) indicate that Elbert and Park Counties are infrequent contributors to air quality in the DM/NFR nonattainment area. This is indicated by the very low number of trajectory points in the grid cells over Elbert and Park Counties, particularly over the urbanized areas of concern. Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 22 of 91 In summary, the inclusion of the urbanized areas of Elbert and Park Counties into the ozone nonattainment area is not warranted because of low population, low degree of urbanization, very low precursor emissions, and infrequent contributions to air quality in the DM/NFR. # Northern Portions of Larimer and Weld Counties The northern portions of Larimer and Weld Counties are rural and sparsely populated with most areas having a population density fewer than five people per square mile, as indicated in the Figure 1-9. There are only three stationary point sources with ozone precursor air pollutant emissions above 100 tons/year located north of the existing nonattainment area boundary (see Figures 1-7 and 1-8). Expanding the nonattainment area to include these three point sources would not enhance the States regulatory authority, although any future major modifications to these facilities would be affected. The estimated 2011 emissions (all source categories) for the northern portion of Larimer County are approximately 2,879 tons/year of NO_x and 3,076 tons/year of VOC (approximately 26.4% and 13.9% of total county emissions for NOx and VOC respectively). The estimated 2011 emissions (all source categories) for the northern portion of Weld County are approximately 8,042 tons/year of NO_x and 18,610 tons/year of VOC (approximately 26.4% and 13.9% of total county emissions for NOx and VOC respectively). Depending on the future ozone nonattainment area classification, requirements associated with the existing ozone nonattainment area may increase in stringency, such as the need to expand the vehicle Inspection/Maintenance Program (I&M program). Accordingly, the potential expansion of the existing nonattainment area to include these rural areas could result in requiring residents with vehicles to be subject to mandatory vehicle inspections. The emission reduction benefit associated with a mandatory I/M program targeting rural residents often located far from an inspection station is negligible. The back trajectory analyses below (Figures 1-23 – 1-29) indicate that the northern portions of Larimer and Weld Counties are infrequent contributors to air quality in the DM/NFR nonattainment area. This is indicated by the very low number of trajectory points in the grid cells over the northern portions of Larimer and Weld Counties. In summary, the inclusion of the northern portions of Larimer and Weld Counties into the ozone nonattainment area is not warranted because of sparse population, low degree of urbanization, low precursor emissions, and infrequent contributions to air quality in the DM/NFR. #### Morgan County Morgan County is a rural area outside of the existing ozone nonattainment area. Based on the information in Table 1-4, the estimated 2015 population density for Morgan County is 22.1 people per square mile. The total estimated 2015 population residing in Morgan County is 28,360. Compared to the 3.7 million (2015) people residing in the existing DM/NFR nonattainment area, Morgan County represents less than 0.8 percent of the total population for the area Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 23 of 91 The NO_x emissions for Morgan County are approximately 8,000 tons/year and the VOC emissions are approximately 9,800 tons/year from all source categories. The NO_x emissions from one electric generating unit (EGU) represent approximately half of the total NO_x emissions in the county. The NOx emissions from the EGU were reduced substantially when the operation of a selective catalytic reduction (SCR) system began in 2014. Also, of the 9,800 tons/year of VOC emissions, approximately 7,500 tons/year are from uncontrollable sources. There are three stationary point sources in Morgan County with ozone precursor emissions over 100 tons/year, see Figures 1-7 and 1-8. The back trajectory analyses below (Figures 1-23 – 1-29) indicate that Morgan County is an infrequent contributor to air quality in the DM/NFR nonattainment area. This is indicated by the very low number of trajectory points in the grid cells over Morgan County. In summary, the inclusion of Morgan County into the ozone nonattainment area is not warranted because of low population, low degree of urbanization, low precursor emissions, and infrequent contributions to air quality in the DM/NFR. # **Population Density and Degree of Urbanization Conclusions** The region's population density/degree of urbanization information illustrates that the urbanization (and the associated activities that can result in emissions of ozone precursors) is concentrated within the current 8-hour ozone nonattainment area boundaries. As shown in Table 1-4, the current 8-hour ozone nonattainment area boundary contains 9 of the 10 most densely populated counties in the state. Urbanization rapidly diminishes beyond the central portion of the current nonattainment area. Because population in the surrounding counties is low by comparison, and the human landscape is rural with small pockets of development, the population/urbanization information supports the recommended nonattainment designation for the current 8-hour ozone nonattainment area. If future urbanization indicates that additional counties or regions should be included in the nonattainment area, the existing nonattainment boundary will be revaluated and expanded as necessary. # **Traffic and Commuting Patterns** The following figures (Figure 1-13 – Figure 1-18) show the traffic volume in various areas within and around the DM/NFR area based on information from the Colorado Department of Transportation (CDOT). Colorado Recommended 8-hour Ozone Designations Technical Support Document **North Front Range Area** 在我 **Highway System Traffic Volume Map** 2014 WELD. Legend Annual Average Daily Traffic (AADT) BOULDER 40550 Short Duration Counter 20000 Continuous Traffic Recorder Highway AADT Less then 1,000 1,000 to 2,500 2,500 to 5,000 5,000 to 7,500 7,500 - 10,000 Over 10,000 County Seat Cities and Towns Counties 12 Map Insets ARAPAHOE ELBERT DOUGLAS 11 Figure 1-13: CDOT Traffic Volume in North Front Range Area The above shaded areas in Figure 1-13 denoted by numbers (1-5) are expanded below to provide more detail on localized annual average daily traffic volumes. Figure 1-14: CDOT Traffic Volume in Estes Park Area # Estes Park Area Traffic Volume Map 2014 Legend Annual Average Daily Traffic (AADT) Online Short Duration Counter **Highway System** Figure 1-15: CDOT Traffic Volume in Boulder Area # **Boulder Area** # Highway System Traffic Volume Map 2014 Figure 1-16: CDOT Traffic Volume in Denver Metro Area Figure 1-17: CDOT Traffic Volume in Greeley Area **Greeley Area** Figure 1-18: CDOT Traffic Volume in Bennett
Area Colorado Recommended 8-hour Ozone Designations Technical Support Document Figure 1-19, below, indicates the number of workers commuting into the Denver Region over a 5-year period 2006-2010. For the purposes of the figure, the Denver Region is composed of Adams, Arapahoe, Boulder, Broomfield, Clear Creek, Denver, Douglas, Gilpin, Jefferson counties. Figure 1-19: Number of Workers Commuting between Denver Region and Neighboring Counties The values shown in Figure 1-19 represent all workers commuting between the Denver Region and nearby counties. Since not everyone works every day of the week, the actual number of workers commuting on any given day would be somewhat lower. In Table 1-7, below, the average vehicle miles traveled by county are shown. The values for Weld County in the table represent the vehicle miles traveled only for the southwest portion of the county. Table 1-8 shows the number of trips between residence and workplace for counties within Adams, Arapahoe, Boulder, Broomfield, Denver, Douglas and Jefferson County. Table 1-7: County-Level Annual Average Vehicle Miles Travelled | | YR20 | 15 | YR20 | 25 | YR20: | 35 | YR2040 | | | |-------------|------------|-------|------------|-------|------------|-------|------------|-------|--| | CountyName | VMT | %VMT | VMT | %VMT | VMT | %VMT | VMT | %VMT | | | Adams | 14,483,101 | 17.3% | 17,225,848 | 17.8% | 20,111,484 | 18.8% | 21,021,001 | 19.1% | | | Arapahoe | 14,802,244 | 17.7% | 17,384,553 | 18.0% | 18,525,385 | 17.4% | 19,073,286 | 17.3% | | | Boulder | 7,432,845 | 8.9% | 8,409,822 | 8.7% | 9,204,069 | 8.6% | 9,274,273 | 8.4% | | | Broomfield | 2,297,786 | 2.8% | 2,648,504 | 2.7% | 3,121,476 | 2.9% | 3,239,347 | 2.9% | | | Clear Creek | 1,446,242 | 1.7% | 1,676,227 | 1.7% | 1,809,196 | 1.7% | 1,977,498 | 1.8% | | | Denver | 16,514,702 | 19.8% | 18,699,769 | 19.4% | 20,087,551 | 18.8% | 20,641,570 | 18.7% | | | Douglas | 9,545,751 | 11.4% | 11,366,540 | 11.8% | 12,920,780 | 12.1% | 13,441,573 | 12.2% | | | Gilpin | 182,830 | 0.2% | 189,933 | 0.2% | 207,552 | 0.2% | 219,387 | 0.2% | | | Jefferson | 13,729,808 | 16.4% | 15,456,362 | 16.0% | 16,666,397 | 15.6% | 17,177,702 | 15.6% | | | Weld (SW) | 3,051,510 | 3.7% | 3,578,051 | 3.7% | 4,053,377 | 3.8% | 4,183,718 | 3.8% | | Counties in the current 8-hour ozone nonattainment area Table 1-8: Number of Trips Between Residence and Workplace for Counties within the Denver Region Journey to Work Data by County (Avg. 2006–2010) WORKPLACE Grand Total Region Total 80,200 14 405 12.385 7.030 57.815 2.360 580 22.010 778 197 658 3 112 120 260 795 55 120 4.466 202 124 Arapahoe 17.145 136,010 1.925 870 88,130 18.695 12,465 122 275.687 488 135 1.015 395 45 215 205 2,498 278.185 3,860 40 1,440 118,905 7,555 5,325 612 143,712 1,825 35 110 4,468 148,180 27,250 115 125 535 320 1,370 4,837 12 165 5,018 19.210 43.930 5.300 183,050 8.590 700 26.150 289,271 680 1.869 291,140 137,770 39,230 3,610 25,430 8,835 134,854 2,916 Douglas 3,030 18 475 25,265 9,020 65,010 7.085 268,519 756 435 660 305 2,551 271,070 SW Weld* 1.333 212 2.388 222 1,238 54 456 5.905 2,000 33 2.521 4.612 10.517 DRCOG egion Tota 4,703 6,835 1,055 148,413 261,447 157,663 28,471 3,190 432,723 94,029 216,816 2,006 1,350,075 24,209 1,374,284 weld (Non DRCOG) 5,332 848 9,552 4,952 1,824 2,500 26,120 8 132 10,084 224 0 10,448 36,568 7,547 11,240 ElPaso 495 190 2.620 555 7,765 60 120 277.535 285,300 95 ß Larimer 975 500 7.865 430 2 165 790 1815 14 655 7.260 125 130 635 145,290 105 60 125 91 364 0 11,215 11,598 12,077 Morgan 479 Park 225 3,855 4,015 7,870 16,364 Meighborit Counties Total 496,569 7,512 6,663 17,846 175 12,612 4,530 23 5,639 4,423 60,846 7,692 3,348 277,992 133,374 11,534 3,199 16,724 435,723 155,925 268,110 175,509 29,894 3,365 445,335 98,559 5,340 222,455 6,429 1,410,921 17,716 4.095 282.695 140,209 11,805 17,779 Source: US Census Bureau, ACS 2006-2010 Syr est., Special Tabs for CTPP *Note - 2010 Census population used to determine number of commuters within SW Weld and number of commuters in remaining Weld County, (52,246 out of 252,825 - Approx. 20% SW Weld and 80% Non-DRCDG Weld! ## **Traffic and Commuting Patterns Conclusion** The region's traffic and commuting patterns illustrate that the vast majority of vehicle trips occur within the current 8-hour ozone nonattainment boundary. Average daily traffic rapidly diminishes beyond the core area of the current nonattainment area. Commuting information also Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 30 of 91 indicates that work trips into the region are minimal when compared to traffic volumes that exist in the recommended nonattainment area. Because vehicular traffic in the surrounding counties is low by comparison, and the human landscape is rural with small pockets of development, the traffic and commuting information supports the recommended nonattainment designation for the current 8-hour ozone nonattainment area. If future traffic and commuting information indicates that additional counties or regions should be included in the nonattainment area, the existing nonattainment boundary will be revaluated and expanded as necessary. ## **Growth Rates and Patterns** The following three tables present population growth rates and patterns for the current nonattainment area, bordering counties and nearby micropolitan statistical areas. In Tables 1-9, 1-10 and 1-11, the population data for Larimer and Weld Counties includes the whole county and does not apportion persons residing in the nonattainment area portion of these counties. The 2015 population for the northern portion of Larimer County (nonattainment area excluded) is estimated at 16,679 persons (~5% of County total). The 2015 population for the northern portion of Weld County (nonattainment area excluded) is estimated at 2,852persons (~1% of County total). Table 1-9: Recent Population Estimates for Denver Metro Area, North Front Range and Neighboring Counties | County | July 2010 (Estimate) | July 2015 (Estimate) | 2010 to 2015 Total % Change | 2010 to 2015 Annual % Change | 2010 to 2015 Annual % Change Rank | |---------------|----------------------|----------------------|-----------------------------|------------------------------|-----------------------------------| | Adams | 443,680 | 491,337 | 10.7% | 2.1% | - 6 | | Araphoe | 574,727 | 631,096 | 9.8% | 2.0% | 7 | | Boulder | 295,986 | 319,372 | 7.9% | 1.6% | 8 | | Broomfield | 56,271 | 65,065 | 15.6% | 3.1% | 1 | | Clear Creek | 9,083 | 9,303 | 2.4% | 0.5% | 14 | | Denver | 603,300 | 682,545 | 13.1% | 2.6% | 2 | | Douglas | 286,964 | 322,387 | 12.3% | 2.5% | 3 | | Elbert | 23,095 | 24,735 | 7.1% | 1.4% | 11 | | El Paso | 626,916 | 674,471 | 7.6% | 1.5% | 10 | | Gilpin | 5,461 | 5,828 | 6.7% | 1.3% | 12 | | Grand | 14,783 | 14,615 | -1.1% | -0.2% | 21 | | Jackson | 1,385 | 1,356 | -2.1% | -0.4% | 22 | | Jefferson | 535,625 | 565,524 | 5.6% | 1.1% | | | Larimer | 300,524 | 333,577 | 11.0% | 2.2% | 5 | | Lincoln | 5,469 | 5,557 | 1.6% | 0.3% | 15 | | Logan | 22,130 | 22,036 | -0.4% | -0.1% | 20 | | Morgan | 28,172 | 28,360 | 0.7% | 0.1% | 18 | | Park | 16,262 | 16,510 | 1.5% | 0.3% | 16 | | Summit | 28,065 | 30,257 | 7.8% | 1.6% | 9 | | Teller | 23,450 | 23,385 | -0.3% | -0.1% | 19 | | Washington | 4,801 | 4,864 | 1.3% | 0.3% | 17 | | Weld | 254,166 | 285,174 | 12.2% | 2.4% | 4 | | Total for NAA | 3,351,243 | 3,696,077 | 10.3% | 2.1% | | | Sum for Other | 809,072 | 861,277 | 6.5% | | 4 | Note: NAA total includes the total populations for Weld and Larimer counties Counties in the current 8-hour ozone nonattainment area Top 10- 2010 to 2015 Annual % Change Table 1-10: Population Projections for Denver Metro Area, North Front Range and Neighboring Counties | County | July 2020
(State Estimate) | July 2025
(State Estimate) | July 2030
(State Estimate) | July 2035
(State Estimate) | July 2040
(State Estimate) | July 2045
(State Estimate) | July 2050
(State Estimate) | |---------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------| | | | | | | | | | | Araphoe | 687,520 | 748,470 | 810,672 | 875,381 | 935,138 | 981,660 | 1,016,184 | | Boulder | 337,897 | 359,908 | 379,714 | 398,988 | 416,942 | 427,993 | 436,166 | | Broomfield | 72,388 | 82,081 | 92,051 | 94,178 | 95,453 | 95,870 | 95,658 | | Clear Creek | 9,627 | 10,873 | 12,088 | 13,210 | 14,344 | 15,427 | 16,419 | | Denver | 734,079 | 770,900 | 804,797 | 836,961 | 867,545 | 896,110 | 922,512 | | Douglas | 352,955 | 389,462 | 425,395 | 455,617 | 482,079 | 491,393 | 494,181 | | Elbert | 33,896 | 42,326 | 49,029 | 54,671 | 59,873 | 64,743 | 69,333 | | El Paso | 727,807 | 786,295 | 845,985 | 905,014 | 964,290 | 1,017,813 | 1,070,833 | | Gilpin | 6,054 | 6,194 | 6,286 | 6,542 | 6,699 | 6,822 | 6,944 | | Grand | 16,544 | 18,699 | 20,809 | 22,835 | 24,731 | 26,505 | 28,249 | | Jackson | 1,483 | 1,535 | 1,579 | 1,630 | 1,673 | 1,682 | 1,692 | | Jefferson | 595,849 | 625,516 | 652,326 | 674,241 | 686,319 | 693,880 | 700,173 | | Larimer | 360,434 | 393,517 | 424,882 | 454,593 | 483,322 | 513,003 | 542,039 | | Lincoln | 5,869 | 6,266 | 6,699 | 7,148 | 7,604 | 8,030 | 8,445 | | Logan | 23,247 | 24,663 | 26,213 | 27,807 | 29,350 | 30,823 | 32,271 | | Morgan | 30,232 | 32,336 | 34,436 | 36,619 | 39,017 | 41,391 | 43,710 | | Park | 20,339 | 24,788 | 28,101 | 30,710 | 32,176 | 32,693 | 32,928 | | Summit | 33,366 | 37,987 | 42,197 | 46,066 | 49,704 | 53,184 | 56,606 | | Teller | 25,447 | 27,449 | 28,618 | 29,638 | 30,524 | 31,385 | 32,310 | | Washington | 4,723 | 4,859 | 5,005 | 5,053 | 5,028 | 5,001 | 4,980 | | Weld | 340,265 | 401,866 | 466,717 | 535,889 | 605,605 | 671,753 | 738,396 | | Total for NAA | 4,026,624 | 4,375,436 | 4,721,918 | 5,052,179 | 5,359,814 | 5,612,764 | 5,838,872 | | Sum for Other | | 1,024,270 | 1,107,045
| 1,186,943 | 1,265,013 | 1,335,499 | | Note: NAA total includes the total populations for Weld and Larimer counties Table 1-11: Population Percent Change Projections for Denver Metro Area, North Front Range and Neighboring Counties | | 2015 to 2020 | 2020 to 2025 | 2025 to 2030 | 2030 to 2035 | 2035 to 2040 | 2040 to 2045 | 2045 to 2050 | |-------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | County | (State Estimate) | Adams | 2.2% | 2.1% | 2.0% | 1.8% | 1.6% | 1.3% | 1.2% | | Araphoe | 1.8% | 1.7% | 1.6% | 1.5% | 1.3% | 1.0% | 0.7% | | Boulder | 1.2% | 1.3% | 1.1% | 1.0% | 0.9% | 0.5% | 0.4% | | Broomfield | 2.7% | 2.5% | 2.3% | 0.5% | 0.3% | 0.1% | 0.0% | | Clear Creek | 1.1% | 2.5% | 2.1% | 1.8% | 1.7% | 1.5% | 1.3% | | Denver | 1.6% | 1.0% | 0.9% | 0.8% | 0.7% | 0.7% | 0.6% | | Douglas | 2.0% | 2.0% | 1.8% | 1.4% | 1.1% | 0.4% | 0.1% | | Elbert | 6.1% | 4.5% | 3.0% | 2.2% | 1.8% | 1.6% | 1.4% | | El Paso | 1.5% | 1.6% | 1.5% | 1.4% | 1.3% | 1.1% | 1.0% | | Gilpin | 0.6% | 0.5% | 0.3% | 0.8% | 0.5% | 0.4% | 0.4% | | Grand | 2.2% | 2.5% | 2.2% | 1.9% | 1.6% | 1.4% | 1.3% | | Jackson | 1.1% | 0.7% | 0.6% | 0.6% | 0.5% | 0.1% | 0.1% | | Jefferson | 1.1% | 1.0% | 0.8% | 0.7% | 0.4% | 0.2% | 0.2% | | Larimer | 1.8% | 1.8% | 1.5% | 1.4% | 1.2% | 1.2% | 1.1% | | Lincoln | 1.2% | 1.3% | 1.3% | 1.3% | 1.2% | 1.1% | 1.0% | | Logan | 0.9% | 1.2% | 1.2% | 1.2% | 1.1% | 1.0% | 0.9% | | Morgan | 1.2% | 1.4% | 1.3% | 1.2% | 1.3% | 1.2% | 1.1% | | Park | 3.8% | 4.0% | 2.5% | 1.8% | 0.9% | 0.3% | 0.1% | | Summit | 2.3% | 2.6% | 2.1% | 1.8% | 1.5% | 1.4% | 1.3% | | Teller | 1.5% | 1.5% | 0.8% | 0.7% | 0.6% | 0.6% | 0.6% | | Washington | 0.0% | 0.6% | 0.6% | 0.2% | -0.1% | -0.1% | -0.1% | | Weld | 3.5% | 3.4% | 3.0% | 2.8% | 2.5% | 2.1% | 1.9% | Note: NAA total includes the total populations for Weld and Larimer counties #### **Growth Rates and Patterns Conclusions** The region's growth rates and patterns illustrate that vast majority of increased population and urbanization will occur within the current 8-hour ozone nonattainment boundary. As shown in Table 1-9, nine of the ten counties with the largest population increase from 2010 to 2015 are contained within the current 8-hour ozone nonattainment area. Population density and developed areas are projected to rapidly diminish beyond the core area of the current nonattainment area. Because projected population and activity in the surrounding counties is low by comparison, and the human landscape is projected to be rural with small pockets of development, the growth information supports the recommended nonattainment designation for the current 8-hour ozone nonattainment area. If future growth information indicates that additional counties or regions should be included in the nonattainment area, the existing nonattainment boundary will be revaluated and expanded as necessary. #### **Factor #3: Meteorology** Meteorology is the single most important factor affecting mid-summer ozone in the DM/NFR area, and the Front Range and Platte Valley meteorology are significantly affected by terrain. As reported in a number of papers on the mesoscale meteorology of the area^{2,3,4,5,7,8,10,11,12}, the South Platte Valley and surrounding plains, the east-west Cheyenne Ridge along Colorado's border with Wyoming to the north of the South Platte Valley, the east-west Palmer Divide to the south of the Denver metro area, and the Continental Divide to the west of the South Platte Valley create local circulations that tend to magnify and constrain the influence of local emissions on air Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 33 of 91 quality. Although the terrain and these circulations do not prevent transport into or away from the basin, these factors tend to define a natural airshed. This airshed's boundaries provide a geographical focus for air quality control strategies. In general, three key circulations affect summer air quality within this basin or airshed. The first of these is nighttime and early-morning down-valley drainage flow. At night, infrared radiation from the surface disproportionately cools the ground and the air next to it. This chilled air is denser than surrounding air and flows downhill. These downhill flows converge to form drainage winds that move surface air down the canyons and valleys toward a widening of the Platte Valley in Weld County (see Figure 1-20). There the wider valley and a constriction further downstream, cause pooling of cooler air. Both the drainage winds and the cold pooling trap nighttime and early morning emissions. This phase contributes to the accumulation of emissions that are later processed by the sun and the daytime mountain-valley circulation during the afternoon. Figure 1-20: Nighttime Drainage Flows (Red Arrows) into the Platte Valley or Basin The second key circulation is thermally-driven upslope flow which is a component of a mountain-valley circulation. Daytime solar heating of higher terrain and sun-facing slopes creates areas of low pressure over these surfaces that cause a reversal of the nighttime drainage pattern. Winds tend to blow uphill or up-slope (see Figure 1-21). Figure 1-21: Daytime Thermally-Driven Upslope Flows (Red Arrows) Toward Higher Terrain The third key circulation is the mountain plains solenoid circulation. Its relevance to ozone is described by Reddy and Pfister (2016) and Sullivan et al. (2016). The solenoid circulation consists of thermally-driven surface upslope flow (toward the southwest, west, and northwest) to mountain top level during the afternoon, mixing and transporting vertically, and weak transport to the east at higher altitudes. Vertical mixing and subsidence over plains near Denver closes this loop, tending to keep ozone in the area. Light winds, a deep layer of thermally-driven upslope flow, local vertical recirculation, cloud-free skies, and warm temperatures are key ingredients for high ozone at the surface. A HYSPLIT (Rolph, 2016, and Stein et al., 2015) back-trajectory analysis on the four highest days for each year in 2006 to 2008 for Fort Collins West, Rocky Flats, and Chatfield was completed for analysis of the existing nonattainment area and the 2008 8-hour standard. Figure 1-22 shows the results of that analysis. The contouring is based on approximately 7,200 points or hours aggregated by 0.1 by 0.1 degree grids representing 24 hours of back trajectories for each of the eight hours contributing to the 4 highest values for each year and each site. Hours represent the aggregate back trajectory points or hours for these events in each grid cell. This analysis confirmed that the highest densities of the back-trajectory points for the prior 24-hours were within the airshed, overlapped with the highest emissions source areas, and were in the nonattainment area. Figure 1-22: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in 2006 to 2008 for Fort Collins West, Rocky Flats, and Chatfield This HYSPLIT analysis was repeated for the nonattainment area for the new 70 ppb standard. In the previous analysis (Figure 1-22), the meteorology used to drive HYSPLIT was the 40 km EDAS40 data assimilation/model product. For the current analysis, the NAM12 12 km pseudo analysis product was used, which provides a reasonable reconciliation of observations and model physics. The EDAS40, because of its coarser resolution and reduced ability to simulate thermally-driven upslope flows, likely attributed more of the elevated ozone to source areas in and near the foothills. Figures 1-23 through 1-26 show the results for Fort Collins West, Rocky Flats, NREL, and Chatfield, respectively, for the four highest ozone events at each site each year from 2013-2015 (data flagged as exceptional events have been excluded). Each site shows the highest areas of influence toward the typical afternoon upslope flow at each location. In other words, these plots point to source areas upwind. The contouring is based on 2,400 points or hours aggregated by 0.1 by 0.1 degree grids representing 24 hours of back trajectories for each of the eight hours contributing to the 4 highest values for each year. Hours represent the aggregate back trajectory points or hours for these events in each grid cell. Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 36 of 91 150 140 FTCW 10 130 120 Greeley 110 100 50 90 2 80 **RFLAT** 70 60 **NREL** Denver 50 40 CHAT 30 20 10 2 **Hours** Figure 1-23: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in 2013 to 2015 for Fort Collins West 150 140 **FTCW** 130 120 Greeley 110 100 10 90 80 70 60 NREL® Denver 50 40 CHAT 30 20 ഗ 10 2 **Hours** N Figure 1-24: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in 2013 to 2015 for Rocky Flats **FTCW** ♦ Greeley RELAT NREE 10 CHAT **Hours** Figure 1-25: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in 2013 to 2015 for NREL Figure 1-26: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in 2013 to 2015 for Chatfield In Figure 1-27, below, the results of Figures 1-23 - 1-26 have been combined in a composite contour plot for the four sites. The contouring is based on 9,600 points or hours aggregated by 0.1 by 0.1 degree grids representing 24 hours of back trajectories for each of the eight hours contributing to the 4 highest values for each year and each site. Hours represent the aggregate back trajectory points or hours for these events in each grid cell. Figure 1-27: Composite HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in 2013 to 2015 for Fort Collins West, Rocky Flats, NREL, and Chatfield Figure 1-28, below, shows the total hour counts for each 0.1 by 0.1 grid cell, and Figure 1-29 shows the percentage of the total 9,600 back trajectory point hours for all four sites that occurred in each grid cell. These maps show
that the areas of greatest influence continue to be within the existing nonattainment area boundary. It is worth noting that some unknown portion of the points/hours from areas to the west of the nonattainment area are likely the result of mountain plains solenoid circulations simulated in the NAM12 data set. These represent ozone and precursors that would be attributable to sources within the nonattainment area boundaries. In these cases, ozone and or its precursors would have completed a loop flow and returned to the nonattainment area. The plot in Figure 1-28 is based on 9,600 points or hours aggregated by 0.1 by 0.1 degree grids representing 24 hours of back trajectories for each of the eight hours contributing to the 4 highest Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 41 of 91 values for each year and each site. Hours represent the aggregate back trajectory points or hours for these events in each grid cell. In Figure 1-29, the percentage of total hours in each grid cell is based on 9,600 points or hours aggregated by 0.1 by 0.1 degree grids representing 24 hours of back trajectories for each of the eight hours contributing to the 4 highest values for each year and each site. Figure 1-28: HYSPLIT Back-Trajectory for the Four Highest Days for Each year in 2013 to 2015 for Fort Collins West, Rocky Flats, NREL, and Chatfield. Figure 1-29: HYSPLIT Back-Trajectory for the Four Highest Days for Each Year in 2013 to 2015 for Fort Collins West, Rocky Flats, NREL, and Chatfield. Tropospheric column NO₂ amounts were acquired from measurements made by the Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite - Version 003 Level 3 NO₂ data cloud-screened at 30% with a grid resolution of 0.25° by 0.25° based on the NASA algorithm (Bucsela et al., 2013) obtained from the NASA Giovanni website http://giovanni.sci.gsfc.nasa.gov/giovanni/. The mean tropospheric column NO₂ in 10¹⁵ molecules per square centimeter for June 1 through August 31, 2015, is shown in Figure 1-30. This plot represents conditions at about 13:30 MST each day, and by this time thermally-driven upslope would have shifted NO₂ to the west of the principal urban sources and towards the Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 43 of 91 foothills. Nevertheless, this data set shows that most of the higher levels of NO_x in the area continue to be within the existing nonattainment area boundaries. Figure 1-30: Mean OMI Tropospheric Column NO_2 in 10^{15} Molecules per Square Centimeter for Approximately 13:30 MST for June 1 through August 31, 2015. ### **Meteorology Conclusions** The region's meteorological information indicates that the current 8-hour ozone NAA boundary is appropriate for the recommended ozone NAA. The Division has thoroughly evaluated the region's meteorology over the years and has concluded that the airshed for the region is encompassed by the current 8-hour NAA. Upslope flow from the lower elevation regions through the urbanized and industrialized regions of the air shed dominates on high ozone days. If meteorological information indicates that additional counties or regions should be included in the nonattainment area, the existing nonattainment boundary will be revaluated and expanded as necessary. ### **Meteorology References** 1) Bucsela, E. J., N. A. Krotkov, E. A. Celarier, L. N. Lamsal, W. H. Swartz, P. K. Bhartia, K. F. Boersma, J. P. Veefkind, J. F. Gleason, and K. E. Pickering (2013), A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 44 of 91 - instruments: Applications to OMI, Atmos. Meas. Tech., 6(10), 2607–2626, doi:10.5194/amt-6-2607-2013. - 2) Crook, N. A., T. L. Clark, and M. W. Moncrieff, 1990. The Denver Cyclone. Part I: generation in low froude number flow, *Journal of the Atmospheric Sciences 47*, No. 23, 2725-2742. - 3) Crook, N. A., T. L. Clark, and M. W. Moncrieff, 1991. The Denver Cyclone. Part II: interaction with the convective boundary layer, *Journal of the Atmospheric Sciences 48*, No. 19, 2109-2126. - 4) Reddy, P. J., D.E. Barbarick, and R.D. Osterburg, 1995. Development of a statistical model for forecasting episodes of visibility degradation in the Denver metropolitan area, *Journal of Applied Meteorology 34*, No. 3, 616-625. - 5) Reddy, P. J., and G. G. Pfister, 2016, Meteorological factors contributing to the interannual variability of midsummer surface ozone in Colorado, Utah, and other western U.S. states, *J. Geophys. Res. Atmos.*, 121, 2434–2456, doi:10.1002/2015JD023840. - 6) Rolph, G.D. (2016). Real-time Environmental Applications and Display sYstem (READY) Website (http://www.ready.noaa.gov). NOAA Air Resources Laboratory, College Park, MD. - 7) Sullivan, J. et al., 2016. Quantifying the contribution of thermally-driven recirculation to a high ozone event along the Colorado Front Range using lidar, submitted to *J. Geophys. Res. Atmos.* - 8) Schreibner-Abshire, W. and A. R. Rodi, 1991. Mesoscale convergence zone development in northeastern Colorado under southwest flow, *Monthly Weather Review 119*. - 9) Stein, A.F., Draxler, R.R, Rolph, G.D., Stunder, B.J.B., Cohen, M.D., and Ngan, F., (2015). NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bull. Amer. Meteor. Soc., 96, 2059-2077, http://dx.doi.org/10.1175/BAMS-D-14-00110. - 10) Szoke, E. J., and J. A. Augustine, 1990. An examination of the mean flow and thermodynamic characteristics of a mesoscale flow feature: the Denver Cyclone, Preprints, Fourth Conference on Mesoscale Processes, Boulder, American Meteorological Society. - 11) Szoke, E. J., 1991. Eye of the Denver Cyclone, Monthly Weather Review 119, 1283-1292. - 12) Toth, J. J., and R. H. Johnson, 1985. Summer surface flow characteristics over northeast Colorado, *Monthly Weather Review 113*, No. 9, 1458-1469 # Factor #4: Geography/Topography An illustration of the topography of the Denver basin is shown below. Figure 1-31: Topographic Illustration of Physical Barriers that define the Denver Basin With the Rocky Mountains to the west, the Palmer Divide to the south, the Cheyenne Ridge to the north, and following the S. Platte River valley to the northeast, the area is commonly referred to as the Denver Basin and serves as the topographic and climatological airshed for the region. The region's geography and topographic features supports the recommended nonattainment designation for the current 8-hour ozone nonattainment area. The following topographic map illustrates the physical barriers that define the Denver Basin. Figure 1-32: Topographic illustration of physical barriers that define the Denver Basin #### Elevation and Ozone Concentrations Decades of weekly ozonesondes in Boulder, recent aircraft profiles of ozone over the Front Range, and research in other places in the United States -show that ozone concentrations in the boundary layer often increase with altitude above ground. One of the main reasons is that ozone near the ground is diminished by reactions with nitric oxide emitted near the surface by mobile and point sources. Ozone at ground level is also reduced to some extent by oxidation reactions with vegetation and other materials on the surface. Ozone near the top of the boundary layer may also be elevated because of complex re-circulation effects, residual layer processes, and prolonged residence times that allow for an accumulation of ozone aloft. High ozone concentrations are possible in the higher terrain of the Front Range. It is known that individual concentrations in excess of the new standard have been measured at NOAA's Niwot Ridge Tundra monitor at 11,500 feet in Boulder County (located in the existing 8-hour ozone non-attainment area) and a short-term exploratory monitor operated by the United States Forest Service (USFS) for several seasons at Kenosha Pass in Park County. The Niwot Ridge Tundra site uses an "equivalent" analyzer, but to our knowledge the NOAA air monitoring does not meet the QA/QA requirements as set forth in 40CFR58, Appendix A. At Kenosha Pass, the USFS used the 2B-Tech analyzer. This monitor is not designated as a "reference" or "equivalent" Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 47 of 91 analyzer as set forth in 40CFR53, and the monitoring effort did not meet the QA/QA requirements as set forth in 40CFR58, Appendix A. Presently, there is no federal reference method data that show that ozone concentrations are in violation of the standard in Clear Creek, Gilpin, or Park Counties In response to the possibility of elevated ozone in the higher elevations or the Front Range foothills, where public exposure to elevated ozone is of particular concern, the Division added two ozone monitors, one located at Aspen Park (elevation 8,095 feet - near Conifer) and the other in Rist Canyon (elevation 6,750 feet - west of Fort Collins). Both monitors began operation in 2009 and the Rist Canyon monitor ceased operation in 2013 when it fulfilled its monitoring objectives. The Aspen Park monitor is currently showing attainment with the revised standard. In addition to the long-term federal reference method ozone monitor located near Longs Peak at an elevation of about 9,000 feet in Rocky Mountain National Park, the Division began operation of a non-federal reference monitor at Mines Peak in 2014. The Mines Peak ozone monitor is located above Berthoud Pass at an elevation over 12,400 feet, which has an average 4th maximum ozone concentration around 69 ppb. While it is certainly possible that high concentrations may occur at high altitudes in these Clear Creek, Gilpin, or Park Counties, it is important to note that the primary source for this ozone is most likely the urbanized area of the plains to the east. Anthropogenic emissions from these mountain areas are expected to have an insignificant
contribution to ozone in the nonattainment area. ### Geography/Topography Conclusion The region's east-facing open bowl topography indicates that the current 8-hour ozone nonattainment boundary is appropriate for the recommended ozone nonattainment area. If future refined modeling indicates that additional counties or regions should be included in the nonattainment area, the existing nonattainment boundary will be revaluated and expanded as necessary. #### Factor #5: Jurisdictional Boundaries #### Regional Air Quality Council The Regional Air Quality Council (RAQC) is designated as the lead air quality planning agency for the Denver metropolitan area and the DM/NFR ozone nonattainment area. In this capacity, the mission of the RAQC is to develop effective and cost efficient air quality initiatives with input from state and local government, the private sector, stakeholder groups, and private citizens. The RAQC's primary task is to prepare state implementation plans (SIPs) for compliance with federal air quality standards. The RAQC consists of a 24 member board appointed by the Governor. Since July 2007, the RAQC has been directed by the Governor to develop effective plans (SIPs) to reduce ozone in the DM/NFR Area as well as to propose measures to further reduce ozone concentrations. Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 48 of 91 # North Front Range Transportation and Air Quality Planning Council The North Front Range Transportation and Air Quality Planning Council is designated by the Governor as the lead air quality planning organization for the North Front Range region. It is a nonprofit, public organization of 15 local and county governments in Larimer and Weld counties and is funded through federal and state grants, and local funds. The goal of the council is to enhance air quality and mobility among northern Colorado communities and between the North Front Range and the Denver Metro area by developing cooperative working relationships and financial partnerships among its member governments, the Colorado Department of Transportation (CDOT), Federal Highway Administration (FHA), the Federal Transit Administration (FTA), and the private sector. The council is responsible for proposing air quality measures affecting the North Front Range and performing conformity determinations to ensure its transportation plans and programs comply with the state implementation plan. #### Colorado Air Quality Control Commission The Colorado Air Quality Control Commission (AQCC) is the regulatory body with responsibility for adopting air quality regulations consistent with state statute including the responsibility and the authority to adopt state implementation plans (SIPs) and implementing regulations. The AQCC takes action on SIPs and regulations through a public rulemaking process. The AQCC has nine members who are appointed by the Governor and confirmed by the State Senate. #### **Level of Control of Emission Sources** The current recommended nonattainment area has been subject to numerous and aggressive emission control programs. Some of these programs are listed below: ### **Stationary Source Emission Controls:** - Oil and gas controls - o 90% emission reduction from existing condensate tanks - o 95% control efficiency for new and modified condensate tanks - Low-bleed pneumatics only - o 95% control efficiency for air pollution control equipment - Leak detection and repair program - Flash separator or flash tank on glycol natural gas dehydrator reduce VOC's by 90% - Auto-igniters required on combustion devices for VOC control - Stationary source controls for VOCs and NOx in Regulations 3, 6, 7 and 8 - Paint shops, solvent usage, industrial process changes - Colorado Clean Air Clean Jobs Act - Regional Haze SIP provisions contained in regulation No. 3 ### Mobile Source Emission Controls: Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 49 of 91 - Federal diesel fuel standards - 7.8 reid vapor pressure with 1 PSI Ethanol Waiver (8.8 RVP) - Stage I vapor recovery - Tier II Low Sulfur Gasoline - o 30ppm average/80ppm max - Statewide/Year Round - Phased-in from 2004 - Enhanced I/M throughout the region - Federal tailpipe standards TIER II - Ozone transportation conformity - Diesel school bus retrofits - Federal alternative fuels programs - Federal/state tax credits for hybrids/alternative fuels use - Federal on-road and non-road mobile source standards and regulations - Non-Road Engines, Vehicles, Equipment - Large Non-Road Diesel Engine Rule Tier 4 (Phased-In Model Years (MY) 2008–2015) - Locomotive Engine Rule (MY 2015+) - Federal Non-Road Spark-Ignition Engines and Equipment (Phased-In MY 2008– 2016) - o Recreational Spark-Ignition (SI) Engine Standards (Phased-In MY 2008+) - On-Road Engines and Vehicles - Tier 2 Standards for Light–Duty and some Medium–Duty Vehicles (Phased–In MY 2004– 2009) - Tier 3 Standards for Light–Duty and some Medium–Duty Vehicles (Phased–In MY 2017–2025) - o Heavy–Duty Engine and Vehicle Standards (Phased–In MY 2007+) - Light-Duty Vehicle Greenhouse Gas Rule (Phase 1 (Phased-In MY 2012–2016); Phase 2 (Phased-In MY 2017–2025)) - Medium and Heavy–Duty Vehicle Greenhouse Gas Rules (Phase 1 (Phased–In MY 2014–2018)) - Fuels - Tier 3 Fuel Standards (Effective 2017 for large refineries, 2020 for small refineries) - o Renewable Fuel Standard Program (RFS2) (Effective 2015) - o Control of Hazardous Air Pollutants From Mobile Sources (Effective 2007) - o Ultra–Low–Sulfur Diesel (ULSD) (Effective 2006) ### Area Source Emission Controls: - Architectural/traffic/industrial and consumer products standards - Prescribed burning limits - Low emission gasoline cans Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 50 of 91 ### Education/Outreach: An extensive media-advertising program to raise public awareness about ozone solutions has been implemented - emphasis on motor vehicle solutions - High ozone forecasting - Paid advertising - Media and education outreach - Lawn mower exchange - Gas can exchange - Car care clinics - Gas cap checks for municipal fleets - Pre- and post-study surveys to determine effectiveness of the outreach and education efforts in affecting behavior change - Outreach, awareness and education - Rideshare/transit programs - Local voluntary programs to reduce VMT - Repair your air program local high emitter identification/repair program - Repair Your Air Campaign aggressively utilizes available "cash-for-clunkers" monies # Summary Conclusions for DM/NR 8-hour Nonattainment Area The data and analysis presented in the five factors provide documentation and compelling evidence supporting a finding of nonattainment and for maintaining the current nonattainment area for the revised 8-hour ozone area. # **SECTION 2** # Rangely Area of Rio Blanco County # SECTION 2: Rangely Area of Rio Blanco County – Five Factor Analysis for Ozone Attainment # **Designation Recommendation** The State recommends designating the Rangely area of Rio Blanco County as attainment/unclassifiable for the 2015 revised 8-hour ozone standard (0.070 ppm). The three-year average of the 4th maximum 8-hour ozone concentration over the period of 2013 - 2015 at the Rangely monitor (operated by the Bureau of Land Management) is in violation of the revised 8-hour ozone standard; however, the State is recommending an attainment/unclassifiable designation based on the following technical review using a five-factor analysis. ## Rangely Area Overview The town of Rangely is located in northwest Colorado in western Rio Blanco County, see Figure 2-1. Rangely is approximately 13 miles from the Utah border and Uintah County. Rio Blanco County is rural and sparsely populated. Figure 2-1: Rangely Location The Ute Indian Tribe of the Uintah and Ouray Reservation is located to the west in Uintah County on the border with Rio Blanco County, as shown in Figure 2-2. EPA Region 8 has full air quality management authority over the tribal lands in this area. Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 53 of 91 Figure 2-2: Utah/Colorado Tribal Lands Map The Piceance and Uinta geologic basins lie beneath southwest Colorado, including the Rangely area, and northeast Utah as shown in Figure 2-3. These basins are the source of commercial oil and gas production. Figure 2-3: Uinta/Piceance Basin Map Figure 1. Digital elevation model showing the location and topography of the Uinta-Piceance Province (red line). Current maps of the oil and gas wells in the Piceance and Uinta Basins are shown below in Figures 2-4 and 2-5. A 2012/2013 map showing both the Uinta and Piceance oil and gas well locations is shown in Figure 2-6. The Utah Department of Environmental Quality (DEQ) estimates that about 70% of the oil and gas production in the Uinta Basin takes place in tribal lands. Figure 2-4: Colorado Piceance Basin Well Location Map Figure 2-5: Utah Uinta Basin Well Location Map Figure 2-6: Piceance/Uinta Basins Well Location Map ### Factor #1: Air Quality Data The Rangely area of Rio Blanco County is part of Air Quality Control Region (AQCR) 11. AQCR 11 is made up of Garfield, Mesa, Moffat and Rio Blanco counties. There are currently 8 ozone monitors operating in AQCR 11 (Lay Peak was discontinued at the end of 2014 due to the site meeting its monitoring objectives). There are also numerous ozone monitors in the Uinta Basin that were examined in this technical analysis. A map of the monitoring stations in this area is shown in Figure 2-7. For the monitoring locations shown in Figure 2-7, 2013-2015 monitoring data is summarized in Table 2-1 (the monitors currently in violation of the revised 2015 standard are highlighted in red) and historic monitoring data is shown in Figures 2-8 and 2-9. Summit County Duchesne County Privitand Disagon Garbon County Disagon Carbon County Disagon Uintah County Garfield County Garco-Vorgisar Park
GayCo-Vorgisar Gay Figure 2-7: Ozone Monitoring Sites for AQCR 11 and Utah Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 56 of 91 Table 2-1: Ozone Monitoring Data for AQCR 11 | 4th Maximu | AQCR
m 8-Hour Ozon | 11 Sites
e Values ar | nd 3-Year A | verages | | | |----------------------|-----------------------|-------------------------|-------------|---------|---------|--| | | | | 3-Year | | | | | Site Name | AQS# | 2013 | 2014 | 2015 | Average | | | | CDPHE-/ | APCD Sites | | | | | | Rifle | 08-045-0012 | 0.062 | 0.061 | 0.068 | 0.063 | | | Palisade | 08-077-0020 | 0.066 | 0.062 | 0.065 | 0.064 | | | Lay Peak | 08-081-0002 | 0.065 | 0.062 | * | * | | | | Other A | gency Sites | | | | | | USFS-Sunlight Mtn | 08-045-0016 | * | 0.055 | - | ** | | | GarCo-Battlement | 08-045-0019 | 0.069 | 0.061 | ÷e* | * | | | GarCo-Vogelaar Park | 08-045-0020 | * | * | 0.064 | 0.000 | | | GarCo-Carbondale | 08-045-0021 | 0.058 | 0.059 | 0.066 | 0.061 | | | BLM-Meeker | 08-103-0005 | 0.064 | 0.062 | 0.064 | 0.063 | | | BLM-Rangely | 08-103-0006 | 0.091 | 0.062 | 0.066 | 0.073 | | | | Uint | a Basin | | | | | | Roosevelt, Utah | 49-013-0002 | 0.104 | 0.062 | 0.060 | 0.075 | | | Fruitland, Utah | 49-013-1001 | 0.069 | * | * | * | | | U&O Myton, Utah | 49-013-7011 | 0.108 | 0.067 | 0.066 | 0.080 | | | Vernal, Utah | 49-047-1003 | 0.102 | 0.062 | 0.064 | 0.076 | | | Redwash, Utah | 49-047-2002 | 0.112 | 0.064 | 0.067 | 0.081 | | | Ouray, Utah | 49-047-2003 | 0.133 | 0.079 | 0.068 | - 0.093 | | | Dragon, Utah | 49-047-5632 | 0.082 | * | - | 40. | | | U&O Whiterocks, Utah | 49-047-7022 | 0.095 | 0.064 | 0.068 | 0.075 | | 8-Hour Ozone --- 4th Maximum AQCR 11 0.100 (Level of 8-hr. NAAQS = 0.070 ppm) 0.095 0.090 -Lay Peak **Barts ber million** 0.085 0.080 0.075 0.065 BLM-Rangely -BLM-Meeker -Rifle →── GarCo-Battlement GarCo-Vogelaar Park 0.060 — USFS-Sunlight 0.055 GarCo-Carbondale 0.050 Palisade 2006 2015 2007 2008 2009 2012 2013 2014 2011 Year Figure 2-8: AQCR 11-8-hour (4th Max) Ozone Values ### **Air Quality Data Conclusions** As shown in Table 2-1 the three-year average of the 4th maximum 8-hour concentration from 2013-2015 at the BLM Rangely monitor is 0.073 ppm, which is in violation of the revised 8-hour ozone standard. However, the violation of the standard is due to an unusually high value in 2013 Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 58 of 91 (0.091 ppm) that is associated with wintertime ozone formation. This unusually high year is also seen for all monitors in the Uinta Basin, as shown in Figure 2-9. Since 2013 ozone levels were very uncharacteristic, and that 2013 data will not be used by the EPA in determining compliance with the standard, the State recommends the area be designated as attainment/unclassifiable. #### Factor #2: Emissions and Emissions-Related Data Table 2-2 includes the 2011 emissions for NO_x and VOC emissions for 16 source categories for AQCR 11 and Uintah County along with emissions from the Ute Mountain Ute Tribe of the Ute Mountain Reservation (includes Ute Indian Tribe of the Uintah and Ouray Reservation, Southern Ute Tribe and Ute Mountain Ute Tribe). The emission sources are categorized into controllable and uncontrollable emissions. Biogenic, agricultural livestock waste and wildfire emissions comprise the uncontrolled emission sources. Table 2-2: 2011 Ozone Precursor Emissions Data for AQCR 11 and Surrounding Areas | | Garf | ield | Me | 25.0 | Mo | ffat | . Rio E | lanco | Uin | tah | Ute Moun | tain Tribe | |--------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------| | Category | ΝΟ, (τργ) | VOC (tpy) | NO, (tpy) | VGC (tpy) | NO, (tpy) | VOC (tpy) | | Agriculture Burning | 0 | 0 | 1 | 2 | 4 | 9 | 1 | 3 | 7 | 17 | 0 | 0 | | Aircraft | 1 | 2 | 33 | 14 | 0 | 0 | 2 | 4 | 1 | 4 | 0 | 0 | | Commercial Cooking | 0 | 4 | 0 | 6 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | | Electricity Generating Units | 47 | 18 | 62 | 1 | 13,557 | 65 | 1 | 2 | 0 | 0 | 6,590 | 46 | | Prescribed Fire | 23 | 393 | 32 | 585 | 3 | 26 | 4 | 66 | 0 | 3 | 0 | 0 | | Fuel Combustion | 6,081 | 2,283 | 1,479 | 707 | 687 | 155 | 2,987 | 488 | 67 | 46 | 0 | 0 | | Highway Vehicles | 2,258 | 847 | 3,241 | 1,724 | 338 | 203 | 174 | 103 | 1,275 | 463 | 0 | 0 | | Non-Road | 327 | 322 | 561 | 670 | 135 | 183 | 170 | 318 | 191 | 286 | 0 | 0 | | Oil and Gas Production | 6,762 | 79,607 | 639 | 9,142 | 332 | 3,577 | 1,434 | 23,432 | 10,033 | 76,502 | 0 | 0 | | Other Point Sources | 96 | 7,162 | 100 | 1,222 | 122 | 1,085 | 19 | 2,489 | 14 | 167 | 0 | 0 | | Railroads | 518 | 26 | 864 | 50 | 112 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | | Solvent Utilization | 0 | 314 | 0 | 821 | 0 | 82 | 0 | 40 | 0 | 310 | 0 | 0 | | Surface Coating | 6 | 21 | 27 | 89 | 0 | 4 | 18 | 2 | 0 | 28 | 0 | 0 | | Total- Controllable | 16,119 | 90,999 | 7,039 | 15,032 | 15,290 | 5,397 | 4,809 | 26,948 | 11,588 | 77,826 | 6,590 | 46 | | | | | | | | | | | | · | | | | Biogenics | 290 | 27,634 | 353 | 34,591 | 224 | 36,306 | 217 | 30,849 | 294 | 38,181 | 0 | 0 | | Agriculture- Livestock Waste | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Wildfires | 4 | 76 | 20 | 245 | 18 | 220 | 1 | 12 | 15 | 200 | 0 | 0 | | Total- Uncontrollable | 294 | 27,710 | 373 | 34,836 | 242 | 36,526 | 218 | 30,861 | 309 | 38,381 | 0 | 0 | | Total- Controllable + Uncontrollable | 16,413 | 118,709 | 7,412 | 49,868 | 15,532 | 41,923 | 5,027 | 57,809 | 11,897 | 116,207 | 6,590 | 46 | A summary of the above tabular data is provided in the following graph, Figure 2-10. 2011 NO_x and VOC Emissions (2011 NEI V2) 100,000 80,000 # Electricity Generation 器Fuel Combustion M Non-Road 40,000 ■ Oil and Gas Production ■ Other Point Sources 20,000 ■ Prescribed Fire ≅ Railroads ■ Solvent Utilization ■ Surface Coating # Uncontrollable County Figure 2-10: 2011 Ozone Emissions for AQCR 11 and Surrounding Areas The NO_x and VOC emissions in AQCR 11 and northeast Utah by county and the large and small point sources in northwest Colorado and northeast Utah are shown in Figures 2-11 and 2-12. Figure 2-11: NW CO and NE Utah NO_x Emissions Map State Boundaries County Boundaries Uintah County National Emissions Inventory (NE) 2011 v2 Emissions Lucya Point Sources (VOC GT 100 or NOx GT 100) Small Point Sources VOC - Total County Emissions 170,479 - 380,413 (tons) 89,120 - 170,478 (tons) 19,221 - 40,179 Figure 2-12: NW CO and NE Utah VOC Emissions Map #### **Emissions Data Conclusions** Based on Figure 2-10, the NO_x and VOC emissions in Rio Blanco County are substantially below other nearby counties, and about half of the total VOC precursor emissions are uncontrollable (biogenic, agricultural livestock and forest fire emissions). Oil and gas sources are a significant contributor to VOC emissions in Rio Blanco County, but are far below Uintah County, where oil and gas VOC emissions are more than double. Colorado's stringent oil and gas regulations in Regulation Number 7 require control VOC emissions from the majority of oil and gas sources. Because anthropogenic emissions in Rio Blanco County and Rangely are low and the State has implemented stringent oil and gas regulations, this supports the State recommending the area be designated as attainment/unclassifiable. #### **Population Density and Degree of Urbanization** # CSA and CBSA Analysis EPA suggests that because ground-level ozone and ozone precursor emissions are pervasive and readily transported, it is important to examine ozone-contributing emissions across a relatively broad geographic area. Accordingly, EPA states they will consider information associated with counties in Statistical Area (CBSA) or Combined Statistical Area (CSA) associated with a violating monitor(s). See Figure 2-13 for a map of CBSA and CSA areas in Colorado. Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 61 of 91 Figure 2-13: CBSAs and CSAs and Counties in Colorado As shown in Figure 2-13, Rio Blanco County is not part of a CSA or CBSA. In the case of a violating monitor not being located in a CSA or CBSA, the EPA states that it will review information associated with the county and other adjacent nearby counties. To comply with this requirement, the State's analysis examines Rio Blanco County, nearby counties in AQCR 11 and Uintah County in Utah. # **Population Density** Figure 2-14, below, shows the population density in northwest Colorado and northeast Utah and Table 2-3 summarizes the population. Figure 2-14: Population Density and Degree of Urbanization of NW Colorado and NE Utah Table 2-3: County-Level Population | County | July 2010
(Estimate) | July 2015
(Estimate) | 2010 to 2015 Total
% Change | 2010 to 2015
Annual % Change | |------------|-------------------------|-------------------------|--------------------------------|---------------------------------| | Garfield | 56,094 | 58,095 | 3.57% | 0.71% | | Mesa | 146,489 | 148,513 | 1.38% | 0.28% | | Moffat | 13,812 | 12,937 | -6.34% | -1.27% | | Rio Blanco | 6,669 | 6,571 | -1.47% | -0.29% | | Uintah, UT | 32,444 | 37,928 | 16.90% | 3.38% | ### **Population Density and Degree of Urbanization Conclusions** As shown in Figure 2-14, the population density in Rio Blanco County is less than 5 people per square mile. Table 2-3 shows the population in Rio Blanco County actually decreased from 2010 to 2015, whereas the population in Uintah County is increasing at a rate of about 3.4% per year. The sparse population density of Rio Blanco County and adjoining counties along with the other components of the 5-factor analysis support the State's recommendation of designating the area as attainment/unclassifiable. Colorado Recommended 8-hour Ozone Designations Technical Support Document #### **Traffic and Commuting Patterns** The traffic volumes in AQCR 11 are shown below in Figure 2-15. MOFFAT | 1500 | 1500 | 1500 |
1500 | Figure 2-15: CDOT Traffic Volume in AQCR 11 ### **Traffic and Commuting Patterns Conclusions** Figure 2-15, displays the annual average daily traffic (AADT) volume for northwest Colorado. Generally, the highest traffic volumes in Rio Blanco County occur around the Meeker area but the Rangely area does have a peak AADT volume of 5,700 with the majority of the traffic volumes much lower. Since Rio Blanco County is very rural and far from major employment centers, it seems unlikely that a significant number of residents are commuting daily to neighboring counties. Commuters from other adjoining counties into Rio Blanco County are not expected to be a significant because of sparse population. Consequently, the very low traffic volumes in Rio Blanco County and adjoining counties along with likely insignificant commuter trips further supports the State's recommendation of attainment/unclassifiable for Rio Blanco County and Rangely. #### **Growth Rates and Patterns** The following two tables present growth rates and patterns for Rio Blanco County and neighboring counties. Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 64 of 91 Table 2-4: Population Projections for AQCR 11 | | July 2020 | July 2025 | July 2030 | July 2035 | July 2040 | July 2045 | July 2050 | |------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | County | (State Estimate) | Garfield | 64,080 | 72,030 | 80,631 | 88,974 | 97,153 | 105,205 | 113,249 | | Mesa | 162,034 | 175,675 | 189,162 | 202,261 | 215,237 | 227,593 | 239,618 | | Moffat | 12,987 | 13,366 | 13,947 | 14,403 | 14,733 | 15,033 | 15,325 | | Rio Blanco | 6,688 | 6,787 | 6,985 | 7,185 | 7,377 | 7,556 | 7,724 | Table 2-5: Annual Population Percent Change Projections for AQCR 11 | | 2020 to 2025 | 2025 to 2030 | 2030 to 2035 | 2035 to 2040 | 2040 to 2045 | 2045 to 2050 | |------------|------------------|------------------|------------------|------------------|------------------|------------------| | County | (State Estimate) | | Garfield | 2.5% | 2.4% | 2.1% | 1.8% | 1.7% | 1.5% | | Mesa | 1.7% | 1.5% | 1.4% | 1.3% | 1.1% | 1.1% | | Moffat | 0.6% | 0.9% | 0.7% | 0.5% | 0.4% | 0.4% | | Rio Blanco | 0.3% | 0.6% | 0.6% | 0.5% | 0.5% | 0.4% | #### **Growth Rates and Patterns Conclusions** Rio Blanco County is projected to have minimal growth through 2050, with the highest increase only being 0.6% in a year. Because the county is not growing at a significant rate, the State's recommendation of an attainment/unclassifiable designation for Rangely and Rio Blanco County is further supported. ## Factor #3: Metrological Data In recent years, ozone concentrations above the 2008 (75 ppb) standard have been observed in the Uinta Basin in northeastern Utah during the winter when snow cover is present within the basin. These exceedances of the standard are associated with a unique combination of conditions including large quantities of oil and gas emissions within the basin, cold temperatures and cold pooling in the basin, light winds, a shallow surface mixed layer of between 50 and 200 meters depth (Ahmadov et al., 2015; Oltmans et al., 2014) and the reflective nature of snow. The snow increases the strength and longevity of the shallow surface inversions and reflects sunlight which increases the radiation available for photochemistry. The winter, cold-pool, photochemistry in the center of the basin is highly VOC sensitive. High ozone concentrations require both the local VOC emissions from oil and gas activities in the basin and the intense and shallow decoupling of surface air, which will always be at a maximum at the core of the basin in Utah. Figure 5 of the paper by Ahmadov et al., 2015, shows a west-east cross section of the basin with modeled ozone and winds. These reveal a shallow layer of high-concentration ozone of between 50 and 200 meters depth attached to the basin floor and sidewalls and influenced by terrain-mediated winds and vertical mixing. The vast majority of the high-concentration ozone is formed within the Utah portion of the basin. Occasionally, winds and mixing can transport this ozone into extreme western Rio Blanco County which is located within the easternmost corner of the basin. These transport events have caused exceedances of the standard at Rangely, Colorado, which is at an altitude of 5,200 feet (1,585 meters) above sea level compared to 4,700 feet (1,433 meters) for the center of the basin. The elevation difference between Rangely and the center of the basin is about 150 meters. The fourth maximum 8-hour ozone concentrations at Rangely Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 65 of 91 have been 73, 69, 91, 62, and 66 ppb for 2011 through 2015, respectively. High concentrations in 2013 were associated with winter cold pool events within the Uinta Basin. Figure 2-16 shows the terrain of the basin and area daily maximum 8-hour ozone concentrations for February 14, 2011, a cold pool ozone event day. The highest concentrations are clearly located at the center of the basin at 106 to 146 ppb. Peak ozone drops to 88 ppb at Rangely and 54 ppb at Meeker which is outside the basin. Figure 2-16: Daily max 8-hour ozone Contours in ppb and Site Concentrations in and Near the Uinta Basin on February 14, 2011 Figure 2-17 shows the hourly ozone concentrations from February 3 through 16, 2011, for select sites in and near the Uinta Basin, and these show that the highest concentrations were at sites within or closer to the core of the basin. Redwash and Ouray are in the center of the basin, and Dinosaur National Monument is closer to the edge of the basin. Meeker is outside of the basin and located to the east. Colorado Recommended 8-hour Ozone Designations Technical Support Document Figure 2-17: Hourly Ozone Concentrations in ppb from February 3 through 16, 2011, for Select Sites in and Near the Uinta Basin Figure 2-18 shows surface potential temperatures in the region for 13 MST on February 14, 2011. Blue and green contours in the basin reveal a temperature inversion and decoupled air mass near the core of the basin with Rangely located higher up within the inversion stratification. This horizontal and vertical gradient in surface potential temperatures indicates that mixing was poor and high concentrations in the core of the basin would need an assist from local transport winds in order to influence ozone at Rangely. Figure 2-18: NOAA LAPS Analysis Surface Potential Temperatures in Degrees K for 13 MST February 14, 2011 Figure 2-19 is a plot of surface potential temperatures and near-surface transport winds from the analysis run of the NAM12 model at 11 MST on February 14, 2011 (analysis runs reconcile a multitude of surface weather observations with model physics) showing surface potential temperature contours (blue through red lines) and near-surface winds at the 800 mb level in Utah and Colorado. Colder or blue contours over the Uinta Basin highlight a cold pooling event with a shallow, steep, surface inversion. Transport winds were moving air from near the core of the basin towards Rangely, and this is the likely cause of the exceedance at Rangely. HYSPLIT back trajectories were not used for this analysis because of poor simulation of transport out of the cold pool. Figure 2-19: NAM12 Analysis Run at 18z or 11 MST Showing Surface Potential Temperature and Near-Surface Winds at the 800 mb Level for February 14, 2011, in Utah and Colorado Since Rangely is not at the core of cold pool events or near the primary sources of ozone precursors for these events, high concentrations at Rangely are typically much lower than those within the center of the basin and often lag these sites by many hours or days. Figure 2-20, shows hourly ozone at Rangely and at two sites within the center of the basin (Ouray and Redwash) for January 1 through March 31, 2013,
illustrates this point. The depth of the surface ozone layer must increase or this ozone must be transported eastward before there are significant impacts at Rangely. Figure 2-20: Hourly Ozone Concentrations in ppb at the Ouray and Redwash Monitors in the Core of the Uinta Basin and Rangely, Colorado, from January 1 through March 31, 2013 Additional plots of near-surface transport winds and surface potential temperatures for the highest 5 concentration days at Rangely in 2013 are presented in Figures 2-21 – 2-25. These show conditions on January 24-26 and February 5-6, respectively. Surface potential temperature contours show that a cold pool and vertical and horizontal temperature stratification was in place and that near-surface winds were generally bringing some of this cold pool air into the Rangely area. Figure 2-21: NAM12 Analysis Run at 18z or 11 MST Showing Surface Potential Temperature Contours (Blue Through Red Lines) and Near-Surface Winds at the 800 mb level for January 24, 2013, in Utah and Colorado Figure 2-22: NAM12 Analysis Run at 18z or 11 MST Showing Surface Potential Temperature Contours (Blue Through Red Lines) and Near-Surface Winds at the 800 mb Level for January 25, 2013, in Utah and Colorado. Colorado Recommended 8-hour Ozone Designations Technical Support Document Figure 2-23: NAM12 Analysis Run at 0z (January 27, 2013) or 17 MST (January 26, 2013) Showing Surface Potential Temperature Contours (Blue Through Red Lines) and Near-Surface Winds at the 800 mb Level in Utah and Colorado. Figure 2-24: NAM12 Analysis Run at 18z or 11 MST Showing Surface Potential Temperature Contours (Blue Through Red Lines) and Near-Surface Winds at the 775 mb Level for February 5, 2013, in Utah and Colorado. Colorado Recommended 8-hour Ozone Designations Technical Support Document Figure 2-25: NAM12 Analysis Run at 18z or 11 MST Showing Surface Potential Temperature Contours (Blue Through Red Lines) and Near-Surface Winds at the 800 mb Level for February 6, 2013, in Utah and Colorado. Figure 2-26 from Moore et al., 2014, shows CAMx modeling of Utah's 2008 contribution to regional daily maximum 8-hour ozone of 70 ppb or higher. This suggests that the Uinta Basin emissions in Utah would contribute as much as 15 ppb to maximum ozone near Rangely in the eastern corner of the basin. This is additional evidence that the source for the high ozone at Rangely during winter events is located in Utah. Figure 2-26: WestJump Air Quality Modeling of Utah's 2008 Contribution to Regional Ozone at Max 8-Hour Concentrations of 70 ppb or Higher. Maps and data from the Intermountain West Data Warehouse (IWDW) (http://views.cira.colostate.edu/TSDW/) and satellite-derived NO2 data provide further evidence that Utah is the primary source region for high wintertime ozone at Rangely. IWDW Western Air Quality Study 2011b base case inventory data shows that oil and gas related VOC emissions are 86,217 tons per year in Uintah County in Utah, which is almost entirely in the basin, and 24,417 tons per year in Rio Blanco County, which is almost entirely out of the basin. This is illustrated in Figure 2-27. Tropospheric column NO2 amounts were acquired from measurements made by the Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite - Version 003 Level 3 NO2 data cloud-screened at 30% with a grid resolution of 0.25° by 0.25° based on the NASA algorithm (Bucsela et al., 2013) obtained from the NASA Giovanni website http://giovanni.sci.gsfc.nasa.gov/giovanni/. The mean tropospheric column NO2 in 10¹⁵ molecules per square centimeter for December 1, 2012, through February 28, 2013 is shown in Figure 2-28. Significantly higher amounts of NO2 are found in Uintah County in Utah compared with Rio Blanco County in Colorado. Some of this higher NO2 in Uintah County, however, may Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 74 of 91 be due to emissions from the Bonanza power plant, and these emissions are often above the surface decoupled layer (Oltmans et al., 2014). Figure 2-27: Western Air Quality Study 2011b Base Case VOC Emissions Inventory Data for Oil and Gas Related Sources. Figure 2-28: Mean OMI Satellite Tropospheric NO_2 in 10^{15} Molecules per Square Centimeter for December 1, 2012, through February 28, 2013 ## **Meteorological Conclusions** In summary, meteorological data, evidence from recent research (Ahmadov et al., 2015), air quality modeling results, satellite-derived NO₂ data, and emissions inventory data suggest that the Utah portion of the Uinta Basin is responsible for the high ozone concentrations at Rangely, Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 75 of 91 Colorado, during winter cold pool events. The winter, cold-pool, photochemistry in the center of the basin is highly VOC sensitive. High ozone concentrations require both the local VOC emissions from oil and gas activities in the basin and the intense and shallow decoupling of surface air which will always be at a maximum at the core of the basin in Utah. Because of this, the State is recommending Rangely area of Rio Blanco County be designated as attainment/unclassifiable for the revised standard. #### References Ahmadov, R., McKeen, S., Trainer, M., Banta, R., Brewer, A., Brown, S., Edwards, P. M., de Gouw, J. A., Frost, G. J., Gilman, J., Helmig, D., Johnson, B., Karion, A., Koss, A., Langford, A., Lerner, B., Olson, J., Oltmans, S., Peischl, J., Pétron, G., Pichugina, Y., Roberts, J. M., Ryerson, T., Schnell, R., Senff, C., Sweeney, C., Thompson, C., Veres, P. R., Warneke, C., Wild, R., Williams, E. J., Yuan, B., and Zamora, R.: Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US, Atmos. Chem. Phys., 15, 411-429, doi:10.5194/acp-15-411-2015, 2015. Bucsela, E. J., N. A. Krotkov, E. A. Celarier, L. N. Lamsal, W. H. Swartz, P. K. Bhartia, K. F. Boersma, J. P. Veefkind, J. F. Gleason, and K. E. Pickering (2013), A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications to OMI, Atmos. Meas. Tech., 6(10), 2607–2626, doi:10.5194/amt-6-2607-2013. Moore, T. 2014 et al. West-wide Jumpstart Air Quality Modeling Study final project report and modeling results. Oltmans S, Schnell R, Johnson B, Pétron G, Mefford T, et al. 2014. Anatomy of wintertime ozone associated with oil and natural gas extraction activity in Wyoming and Utah. *Elem. Sci. Anth.* 2: 000024. doi: 10.12952/journal.elementa.000024 #### Factor #4: Geography/Topography The town of Rangely is at an altitude of 5,200 feet (1,585 meters) above sea level. The center of the Uinta Basin is 4,700 feet (1,433 meters). The elevation difference between Rangely and the center of the basin is about 150 meters. As stated in the section above, the geography and meteorology of the Uinta Basin cause high levels of ozone in Utah to be transported to Colorado and impact ozone levels in Rangely. Figure 2-29, below, shows the elevation of Rangely and surrounding areas relative to the Uinta Basin. Figure 2-28: Rangely and Uinta Basin Elevation Map ### Geography/Topography Conclusions The geography and meteorology of the Uinta Basin combine to cause the high levels of ozone in Utah to impact ozone levels in Rangely. Because of this, the state recommends that the Rangely area of Rio Blanco County be designated as attainment/unclassifiable for the revised ozone standard. #### **Factor #5: Jurisdictional Boundaries** The State of Colorado's Air Quality Control Commission and Air Pollution Control Division have jurisdictional authority for air quality management in Rio Blanco County and surrounding Colorado counties. Air quality regulatory authority for the tribal lands of the Ute Indian Tribe of the Uintah and Ouray Reservation are presently administered by the EPA. The Utah DEQ exercises air quality jurisdiction in non-tribal areas of Uintah County. Colorado would note for EPA's consideration that the inclusion of Rio Blanco County or portion thereof within any potential nonattainment area, would add notable multi-jurisdictional complexity in the management of a nonattainment area. #### Level of Control of Emission Sources The State has implemented numerous and effective emission control programs throughout the state. Some of these programs include but are not limited to the following: Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 77 of 91 - Oil and gas controls - o 95% control efficiency for new and modified condensate tanks - Low-bleed pneumatics or no-bleed where on-site electrical grid power is being used for new pneumatics - o 95% control efficiency for air pollution control equipment - Leak detection and repair program - Auto-igniters required on combustion devices for VOC control - Stationary source controls for VOCs and NOx in Regulations 3, 6, 7 and 8 - Paint shops, solvent usage, industrial process changes - Regional Haze SIP provisions contained in regulation No. 3 #### Mobile Source Emission Controls: - Federal diesel fuel standards - 7.8 reid vapor pressure with 1 PSI Ethanol Waiver (8.8 RVP) - Stage I vapor recovery - Tier II Low Sulfur Gasoline - o 30ppm average/80ppm max - Statewide/Year Round - Phased-in from 2004 - Federal tailpipe standards TIER II - Diesel school bus retrofits - Federal alternative fuels programs - Federal/state tax credits for hybrids/alternative fuels use - Federal on-road and non-road mobile source standards and regulations - Non-Road Engines, Vehicles, Equipment - Large Non-Road Diesel Engine Rule Tier 4 (Phased-In Model Years (MY) 2008–2015) - o Locomotive Engine Rule (MY 2015+) - Federal Non-Road Spark-Ignition Engines and Equipment (Phased-In MY 2008– 2016) - o Recreational Spark-Ignition (SI) Engine Standards (Phased-In MY 2008+) - On-Road Engines and Vehicles - Tier 2 Standards for Light–Duty and some
Medium–Duty Vehicles (Phased–In MY 2004–2009) - Tier 3 Standards for Light–Duty and some Medium–Duty Vehicles (Phased–In MY 2017–2025) - o Heavy–Duty Engine and Vehicle Standards (Phased–In MY 2007+) - Light-Duty Vehicle Greenhouse Gas Rule (Phase 1 (Phased-In MY 2012–2016); Phase 2 (Phased-In MY 2017–2025)) - Medium and Heavy–Duty Vehicle Greenhouse Gas Rules (Phase 1 (Phased–In MY 2014–2018)) - Fuels - Tier 3 Fuel Standards (Effective 2017 for large refineries, 2020 for small refineries) Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 78 of 91 - o Renewable Fuel Standard Program (RFS2) (Effective 2015) - o Control of Hazardous Air Pollutants From Mobile Sources (Effective 2007) - o Ultra-Low-Sulfur Diesel (ULSD) (Effective 2006) #### Area Source Emission Controls: - Architectural/traffic/industrial and consumer products standards - Prescribed burning limits - Low emission gasoline cans #### **Summary Conclusions for Rangely** The data and analysis presented in the five factor review provide documentation and compelling evidence supporting a finding that the Rangely area of Rio Blanco County should be designated as attainment/unclassifiable for the 2015 ozone NAAQS, despite recorded violations of the ozone standard at the Rangely monitor. A summary of the basis for recommending that Rangely area of Rio Blanco County should be designated as <u>attainment/unclassifiable</u> are as follows: - 1. Ozone monitoring in Rangely only violates standard because of exceptionally high values in 2013 that are associated with wintertime ozone formation, and 2013 data will not be used by the EPA in determining compliance with the standard - 2. Oil/gas emissions sources in Colorado are already well controlled; and - 3. Population density, expected population growth and traffic volumes in the Rangely area are extremely low. # **SECTION 3** # Remainder of Colorado #### **SECTION 3: Remainder of Colorado** #### **Designation Recommendation** Although there are population centers and emission sources throughout Colorado that cause or contribute to elevated ozone levels, the State presumes that the rest of the State is attaining the 2015 8-hour ozone standard and recommends a designation of attainment/unclassifiable for all other Air Quality Control Regions in the remainder of Colorado. The tribal lands of the Southern Ute (located in Archuleta, La Plata and Montezuma Counties) and Ute Mountain Ute (located in La Plata and Montezuma Counties) are excluded from the recommended designations because those tribes or the EPA are responsible for making such recommendations and determinations. The State reached this conclusion based on reviewing the ambient air monitoring data, and examining precursor emissions in the State's AQCRs. #### **Map of Ozone Monitor Locations** The State is recommending the designation of attainment/unclassifiable based on monitoring data from CDPHE operated ozone monitors along with information from other agencies' ozone monitors in the state. A map showing the monitors operated by CDPHE and other agencies throughout the state is shown in Figure 3-1. Figure 3-1: Ozone Monitoring Sites for Areas Outside of the Denver Metro/North Front Range Region Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 81 of 91 #### Ozone Monitoring Data from CDPHE and Other Agency Sites There are five active ozone monitors (see Table 3-1) operated by CDPHE in the state of Colorado outside of the DM/NFR region. The Lay Peak monitor was discontinued at the end of 2014 due to the site meeting its monitoring objectives. The table below, Table 3-1, summarizes 4th maximum 8-hour concentrations for all monitoring locations in the state of Colorado from 2013-2015. Table 3-1: Ozone Monitoring Data for Areas Outside of the Denver Metro/North Front Range Region | Colorado Sites Outside DMA/NFR 4th Maximum 8-Hour Ozone Values and 3-Year Averages | | | | | | | | | | |--|-------------|----------|-------------|-------|---------|--|--|--|--| | | | | 3-Year | | | | | | | | Site Name | AQS# | 2013 | 2014 | 2015 | Average | | | | | | | CDPHE-APC | D Sites | | | | | | | | | Colorado Springs- Academy, CO | 08-041-0013 | 0.074 | 0.064 | 0.067 | 0.068 | | | | | | Manitou Springs, CO | 08-041-0016 | 0.072 | 0.062 | 0.065 | 0.066 | | | | | | Rifle | 08-045-0012 | 0.062 | 0.062 0.061 | | 0.063 | | | | | | Palisade | 08-077-0020 | 0.066 | 0.062 | 0.065 | 0.064 | | | | | | Lay Peak | 08-081-0002 | 0.065 | 0.062 | - | * | | | | | | Cortez | 08-083-0006 | 0.064 | 0.062 | 0.061 | 0.062 | | | | | | | Other Agen | cy Sites | | | | | | | | | USFS-Sunlight Mtn | 08-045-0016 | saki | 0.055 | 1200 | ·*· | | | | | | GarCo-Battlement | 08-045-0019 | 0.069 | 0.061 | * | *** | | | | | | GarCo-Vogelaar Park | 08-045-0020 | Augustr | insi | 0.064 | | | | | | | GarCo-Carbondale | 08-045-0021 | 0.058 | 0.059 | 0.066 | 0.061 | | | | | | EPA-Gothic | 08-051-1991 | 0.064 | 0.063 | 0.068 | 0.065 | | | | | | USFS-Walden | 08-057-0003 | 0.064 | 0.059 | 0.061 | 0.061 | | | | | | USFS-Shamrock | 08-067-1004 | 0.072 | 0.064 | 0.068 | 0.068 | | | | | | SUIT-Ignacio | 08-067-7001 | 0.069 | 0.067 | 0.068 | 0.068 | | | | | | SUIT-Hwy 550 | 08-067-7003 | 0.067 | 0.065 | 0.066 | 0.066 | | | | | | NPS-Mesa Verde | 08-083-0101 | 0.069 | 0.065 | 0.066 | 0.066 | | | | | | USFS-Fairplay | 08-093-0002 | - Casar | ** | 0.067 | - | | | | | | Aspen-Golf | 08-097-0007 | - | 0.062 | 0.065 | - | | | | | | BLM-Meeker | 08-103-0005 | 0.064 | 0.062 | 0.064 | 0.063 | | | | | | BLM-Rangely | 08-103-0006 | 0.091 | 0.062 | 0.066 | 0.073 | | | | | As the table demonstrates, all monitoring locations outside of the DM/NFR are in compliance with the revised 2015 8-hour ozone standard excluding the BLM-Rangely site (see Section 2 of this TSD for discussion around its area designation). This supports the states recommendation that the remainder of the state be classified as attainment/unclassifiable. # Ozone Monitoring Trends for Areas Outside of the Denver Metro/North Front Range Region The following figures provide historical trend data of the 8-hour ozone 4th maximum for areas in the state outside of the DM/NFR Region. For discussion of Rangely area of Rio Blanco County, please see Section 2 of this Technical Support Document. Figure 3-2: Ozone Monitoring Trends for Southeastern Colorado 8-Hour Ozone --- 4th Maximum **Central Colorado** 0.100 (Level of 8-hr. NAAQS = 0.070 ppm) 0.095 0.090 **Barts ber million** 0.085 0.075 0.075 0.065 -GarCo-Battlement -GarCo-Vogelaar Park GarCo-Carbondale Aspen- Golf EPA- Gothic 0.060 USFS- Walden 0.055 - USFS- Fiarplay 0.050 Year Figure 3-3: Ozone Monitoring Trends for Central Colorado Figure 3-5: Ozone Monitoring Trends for Western Colorado #### **AQCRs and Emission Inventory** #### Air Quality Control Regions There are 13 air quality control regions (AQCR's) in Colorado. The figure below (Figure 3-6) shows the 13 AQCR's relative to the monitoring locations in the state (including monitors operated by other agencies) outside of the existing nonattainment area. AQCR 2 Collins AQCR 12 Greeley AQCR 1 Longmont O'AQCR 110" Boulder Denver AGCR 3 Grand **⊙**Palis AQCR 5 AQCR 4 Manitou OCol Spes Ac Springs Colorado Springer AQCR 10 AQCR 13 Pueblo AQCR 6 AQCR 8 AQCR 9 AQCR 7 Legend DMA/NFR SHour Opone Nonettein Figure 3-6: Ozone Monitoring Sites in Colorado Relative to AQCR's #### **Emissions Inventory** In support of the recommendation of attainment/unclassifiable designation for the remainder of the state, an analysis of NO_x and VOC emissions are provided. The two figures and table below show the NO_x and VOC emissions by county based on the 2011 V2 NEI. In Table 3-2 the emission sources are categorized into controllable and uncontrollable emissions. Biogenic, agricultural livestock waste and wildfire emissions comprise the uncontrolled emission sources. Figure 3-7: 2011 NO_x Emissions Map by County Figure 3-8: 2011 VOC Emissions Map by County Table 3-2: Ozone Precursor Emissions by AQCR in Colorado | | Recommended8-Hour 2011 NOx Emissions 2011 VOC Emissions Total Precursors | | | | | | | | ors | | | |-----------------------|--|---|----------------|--------------------|--------------------|------------------|-----------------|--------------------|------------------|-----------------|------------------| | County | AQCR | Ozone Designation | Total (tpy) | Controllable (tpy) | Uncontrolled (tpy) | Total (tpy) | | Uncontrolled (tpy) | Total (tpy) | | | | Logan | 1 | Attainment/Unclassifiable | 4,374 | 3,268 | 1,106 | 11,066 | 2,494 | 8,572 | 15,440 | 5,762 | 9,678 | | Morgan | 1 | Attainment/Unclassifiable | 7,997 | 7,078 | 920 | 9,786 | 2,311 | 7,475 | 17,784 | 9,388 | 8,395 | | Phillips | 1 | Attainment/Unclassifiable | 1,652 | 1,105 | 548 | 4,204 | 892 | 3,313 | 5,857 | 1,997 | 3,860 | | Sedgwick | 1 | Attainment/Unclassifiable | 1,346 | 952 | 394 | 3,045 | 353 | 2,692 | 4,391 | 1,306 | 3,086 | | Washington | | Attainment/Unclassifiable | 2,991 | 1,453 | 1,538 | 14,919 | 3,649 | 11,270 | 17,910 | 5,102 | 12,808 | | Yuma | | Attainment/Unclassifiable | 6,254 | 4,655 | 1,599 | 24,071 | 12,538 | 11,533 | 30,325 | 17,194 | 13,132 | | Clear Creek | | Attainment/Unclassifiable | 1,829 | 1,767 | 62 | 5,139 | 729 | 4,409 | 6,967 | 2,496 | 4,471 | | Gilpin | | Attainment/Unclassifiable | 490 | 457 | 33 | 3,924 | 260 | 3,664 | 4,414 | 717 | 3,698 | | El Paso | | Attainment/Unclassifiable | 21,605 | 20,752 | 853 | 32,833 | 18,236 | 14,597 | 54,438 | 38,988 | 15,450 | | Park | | Attainment/Unclassifiable | 1,438 | 955 | 483 | 17,398 | 3,485 | 13,913 | 18,836 | 4,440 | 14,396 | | Teller | | Attainment/Unclassifiable | 1,600 | 1,479 | 121 | 10,454 | 2,057 | 8,397 | 12,054 | 3,536 |
8,518 | | Cheyenne | | Attainment/Unclassifiable Attainment/Unclassifiable | 4,204
2,411 | 3,116
1,490 | 1,088
921 | 11,818
10,363 | 1,155 | 10,663
9,194 | 16,022
12,774 | 4,271 | 11,751
10,114 | | Elbert
Kit Carson | _ | Attainment/Unclassifiable | 3,329 | 1,841 | 1,488 | 11,521 | 1,169
933 | 10,588 | 14,850 | 2,660
2,774 | 12,075 | | Lincoln | | Attainment/Unclassifiable | 2,672 | 1,298 | 1,374 | 14,262 | 868 | 13,395 | 16,934 | 2,774 | 14,768 | | Baca | | Attainment/Unclassifiable | 3,224 | 1,631 | 1,593 | 19,206 | 822 | 18,384 | 22,429 | 2,453 | 19,977 | | Bent | | Attainment/Unclassifiable | 2,308 | 1,031 | 1,059 | 15,476 | 661 | 14,815 | 17,784 | 1,911 | 15,873 | | Crowley | | Attainment/Unclassifiable | 800 | 323 | 476 | 6,608 | 243 | 6,365 | 7,407 | 566 | 6,841 | | Kiowa | | Attainment/Unclassifiable | 1,524 | 467 | 1,057 | 11,869 | 704 | 11,165 | 13,393 | 1,171 | 12,222 | | Otero | | Attainment/Unclassifiable | 2,223 | 1,444 | 779 | 10,913 | 1,040 | 9,873 | 13,136 | 2,485 | 10,651 | | Prowers | | Attainment/Unclassifiable | 3,120 | 2,039 | 1,081 | 13,102 | 858 | 12,245 | 16,222 | 2,897 | 13,326 | | Huerfano | | Attainment/Unclassifiable | 1,653 | 1,149 | 504 | 15,342 | 1,113 | 14,229 | 16,996 | 2,262 | 14,734 | | Las Animas | 7 | Attainment/Unclassifiable | 8,570 | 6,184 | 2,386 | 56,008 | 3,757 | 52,251 | 64,579 | 9,942 | 54,637 | | Pueblo | 7 | Attainment/Unclassifiable | 12,670 | 11,568 | 1,102 | 23,375 | 5,576 | 17,799 | 36,045 | 17,143 | 18,901 | | Alamosa | 8 | Attainment/Unclassifiable | 859 | 713 | 146 | 7,297 | 1,933 | 5,364 | 8,156 | 2,646 | 5,511 | | Conejos | 8 | Attainment/Unclassifiable | 747 | 494 | 254 | 10,988 | 1,188 | 9,799 | 11,735 | 1,682 | 10,053 | | Costilla | 8 | Attainment/Unclassifiable | 922 | 748 | 175 | 18,966 | 9,154 | 9,813 | 19,889 | 9,901 | 9,988 | | Mineral | | Attainment/Unclassifiable | 389 | 244 | 145 | 9,052 | 1,004 | 8,049 | 9,441 | 1,248 | 8,194 | | Rio Grande | | Attainment/Unclassifiable | 980 | 758 | 222 | 10,419 | 3,366 | 7,053 | 11,399 | 4,124 | 7,275 | | Saguache | | Attainment/Unclassifiable | 1,070 | 559 | 511 | 25,719 | 2,895 | 22,825 | 26,789 | 3,454 | 23,336 | | Archuleta | | Attainment/Unclassifiable | 1,024 | 884 | 139 | 23,561 | 1,567 | 21,994 | 24,585 | 2,451 | 22,134 | | Dolores | | Attainment/Unclassifiable | 701 | 523 | 177 | 14,504 | 1,754 | 12,750 | 15,204 | 2,277 | 12,927 | | La Plata | | Attainment/Unclassifiable | 12,428 | 12,189 | 240 | 28,261 | 6,744 | 21,517 | 40,689 | 18,932 | 21,757 | | Montezuma | | Attainment/Unclassifiable | 3,078 | 2,779
96 | 298
78 | 33,617 | 10,375
1,097 | 23,243 | 36,695 | 13,154 | 23,541 | | San Juan
Delta | | Attainment/Unclassifiable Attainment/Unclassifiable | 174
1,663 | 1,437 | 226 | 3,944
14,234 | 1,189 | 2,847
13,045 | 4,118
15,897 | 1,193 | 2,925
13,271 | | Gunnison | | Attainment/Unclassifiable | 1,525 | 1,437 | 333 | 32,033 | 3,510 | 28,522 | 33,557 | 2,626
4,702 | 28,856 | | Hinsdale | | Attainment/Unclassifiable | 262 | 1,192 | 175 | 10,252 | 1,408 | 8,844 | 10,514 | 1,495 | 9,019 | | Montrose | | Attainment/Unclassifiable | 3,038 | 2,736 | 302 | 27,603 | 4,545 | 23,058 | 30,642 | 7,281 | 23,361 | | Ouray | | Attainment/Unclassifiable | 463 | 355 | 108 | 7,710 | 938 | 6,772 | 8,173 | 1,292 | 6,880 | | San Miguel | _ | Attainment/Unclassifiable | 876 | 717 | 159 | 14,015 | 1,134 | 12,881 | 14,891 | 1,851 | 13,040 | | Garfield | | Attainment/Unclassifiable | 16,413 | 16,119 | 294 | 118,709 | 90,999 | 27,710 | 135,122 | 107,118 | 28,003 | | Mesa | | Attainment/Unclassifiable | 7,412 | 7,039 | 373 | 49,868 | 15,032 | 34,836 | 57,280 | 22,071 | 35,210 | | Moffat | | Attainment/Unclassifiable | 15,532 | 15,290 | 242 | 41,923 | 5,397 | 36,526 | 57,456 | 20,688 | 36,768 | | Rio Blanco | 11 | Attainment/Unclassifiable | 5,027 | 4,809 | 218 | 57,809 | 26,948 | 30,861 | 62,836 | 31,757 | 31,079 | | Eagle | 12 | Attainment/Unclassifiable | 3,412 | 3,252 | 161 | 18,568 | 2,973 | 15,596 | 21,981 | 6,224 | 15,757 | | Grand | 12 | Attainment/Unclassifiable | 2,564 | 2,378 | 186 | 34,100 | 14,328 | 19,772 | 36,664 | 16,706 | 19,958 | | Jackson | 12 | Attainment/Unclassifiable | 632 | 431 | 202 | 20,813 | 5,239 | 15,575 | 21,445 | 5,669 | 15,776 | | Pitkin | | Attainment/Unclassifiable | 834 | 696 | 138 | 11,400 | 1,049 | 10,350 | 12,234 | 1,746 | 10,488 | | Routt | | Attainment/Unclassifiable | 7,951 | 7,723 | 228 | 29,165 | 3,583 | 25,582 | 37,116 | 11,306 | 25,810 | | Summit | | Attainment/Unclassifiable | 1,634 | 1,536 | 98 | 8,919 | 2,131 | 6,788 | 10,554 | 3,667 | 6,886 | | Chaffee | _ | Attainment/Unclassifiable | 872 | 673 | 199 | 11,012 | 1,501 | 9,512 | 11,884 | 2,173 | 9,711 | | Custer | | Attainment/Unclassifiable | 632 | 223 | 409 | 13,961 | 1,309 | 12,652 | 14,593 | 1,533 | 13,061 | | Fremont | | Attainment/Unclassifiable | 3,406 | 3,110 | 297 | 19,952 | 3,442 | 16,510 | 23,359 | 6,551 | 16,807 | | Lake | | Attainment/Unclassifiable | 283 | 198 | 85 | 3,837 | 547 | 3,290 | 4,120 | 745 | 3,375 | | Adams | NAA | Non-Attainment | 25,245 | 24,521 | 724 | 22,243 | 17,195 | 5,048 | 47,488 | 41,716 | 5,772 | | Arapahoe | | Non-Attainment | 13,022 | 12,538 | 484 | 19,381 | 15,317 | 4,064 | 32,403 | 27,855 | 4,548 | | Boulder
Broomfield | | Non-Attainment | 9,764
1,552 | 9,533
1,492 | 231 | 19,497 | 9,674
2,125 | 9,823 | 29,260 | 19,206
3,617 | 10,054
718 | | Denver | | Non-Attainment
Non-Attainment | 20,042 | 1,492
19,920 | 122 | 2,783
17,144 | 2,125
15,593 | 1,551 | 4,335
37,185 | 3,617
35,513 | 1,672 | | Denver
Douglas | NAA | Non-Attainment
Non-Attainment | 8,048 | 7,809 | 239 | 17,144 | 6,933 | 1,551 | 25,432 | 14,742 | 10,690 | | Jefferson | | Non-Attainment | 14,406 | 14,279 | 127 | 27,388 | 15,287 | 12,100 | 41,794 | 29,566 | 12,228 | | Larimer | | Non-Attainment | 11,577 | 10,905 | 672 | 53,798 | 22,142 | 31,656 | 65,375 | 33,047 | 32,328 | | Weld | | Non-Attainment | 32,696 | 30.463 | 2,233 | 150,982 | 133,972 | 17,010 | 183,678 | 164,434 | 19,243 | | Southern Ute | N/A | | 5,139 | 5,139 | - 2,233 | 2,033 | 2,033 | 1,,010 | 7,173 | 7,173 | 13,243 | | | N/A | | 6,590 | 6,590 | | 46 | 46 | - | 6,636 | 6,636 | - | | | -, - , | | 0,000 | 5,550 | | 0 | | | 3,050 | 5,550 | | | | | | | Top 5 Emissions | | | Top 5 Emissions | | | Top 5 Emissions | | Controllable= Anthropogenic emissions excluding livestock waste Uncontrollable= Biogenic emissions including livestock waste The two AQCR's that contain counties with high ozone precursor emissions outside of the DM/NFR area are AQCR 4 and 11. Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 88 of 91 AQCR 4 is made up of El Paso, Park and Teller counties. El Paso County has the 3^{rd} highest NO_x, 5^{th} highest VOC and the 4^{th} highest total precursor emissions in the state. There are two CDPHE monitors (Colorado Springs- Academy and Manitou Springs) and one USFS monitor (USFS- Fairplay) operating in the AQCR and these monitors show compliance with the revised 2015 8-hour standard. AQCR 11 is made up of Garfield, Mesa, Moffat and Rio Blanco counties. Garfield County has the 5th highest NO_x, 2nd highest VOC and 2nd highest total precursor emissions in the state. There are three CDPHE monitors (Rifle, Palisade and Lay Peak), two BLM monitors (BLM- Meeker, BLM- Rangely), three Garfield County (GarCo) monitors (GarCo-Battlement, GarCo- Vogelaar Park, GarCo- Carbondale) and one USFS monitor (USFS- Sunlight Mtn) operating in the AQCR and these monitors show compliance with the revised 2015 8-hour standard (excluding BLM-Rangely, as detailed in Section 2). As stated above, monitoring data in the AQCRs with the highest precursor emissions outside of the DM/NFR in AQCR 4 and 11 are showing compliance with the revised standard (excluding Rangely, see Section 2 for discussion). It is therefore reasonable to presume that that if these regions with the greatest amount of emissions are not showing violations of the 2008 ozone standard, counties and AQCRs with less emissions (and without monitoring data) are also likely to be in attainment. Therefore, the State recommends that all counties and AQCRs outside of the DM/NFR nonattainment area be designated as attainment/unclassifiable. #### **Population** The population data for the state of Colorado by county is shown in the table below. Table 3-3: Population by County | County | AQCR | Recommended 8-Hour
Ozone Designation | July 2010 (Estimate) | July 2015 (Estimate) | 2010 to 2015 Total % Change | 2010 to 2015 Annual % Change | |-------------|------------|---|----------------------
--|-----------------------------|------------------------------| | Logan | 1 | Attainment/Unclassifiable | 22,130 | 22,036 | -0.42% | -0.08% | | Morgan | | Attainment/Unclassifiable | 28,172 | 28,360 | 0.67% | 0.13% | | Phillips | 1 | Attainment/Unclassifiable | 4,463 | 4,349 | -2.55% | -0.51% | | Sedgwick | 1 | Attainment/Unclassifiable | 2,370 | 2,399 | 1.22% | 0.24% | | Washington | 1 | Attainment/Unclassifiable | 4,801 | 4,864 | 1.31% | 0.26% | | Yuma | 1 | Attainment/Unclassifiable | 10,025 | 10,146 | 1.21% | 0.24% | | Clear Creek | 3 | Attainment/Unclassifiable | 9,083 | 9,303 | 2.42% | 0.48% | | Gilpin | | Attainment/Unclassifiable | 5,461 | 5,828 | 6.72% | 1.34% | | El Paso | | Attainment/Unclassifiable | 626,916 | 674,471 | 7.59% | 1.52% | | Park | | Attainment/Unclassifiable | 16,262 | 16,510 | 1.53% | 0.31% | | Teller | | Attainment/Unclassifiable | 23,450 | 23,385 | -0.28% | -0.06% | | Cheyenne | 5 | Attainment/Unclassifiable | 1,831 | 1,829 | -0.11% | -0.02% | | Elbert | 5 | Attainment/Unclassifiable | 23,095 | 24,735 | 7.10% | 1.42% | | Kit Carson | 5 | Attainment/Unclassifiable | 8,247 | 7,758 | -5.93% | -1.19% | | Lincoln | 5 | Attainment/Unclassifiable | 5,469 | 5,557 | 1.61% | 0.32% | | Baca | 6 | Attainment/Unclassifiable | 3,790 | 3,615 | -4.62% | -0.92% | | Bent | 6 | | 6,509 | 5,830 | -10.43% | -2.09% | | Crowley | 6 | | 5,853 | 5,562 | -4.97% | -0.99% | | Kiowa | | Attainment/Unclassifiable | 1,396 | 1,423 | 1.93% | 0.39% | | Otero | | Attainment/Unclassifiable | 18,883 | 18,343 | -2.86% | -0.57% | | Prowers | | Attainment/Unclassifiable | 12,562 | 11,954 | -4.84% | -0.97% | | Huerfano | 7 | Attainment/Unclassifiable | 6,668 | 6,492 | -2.64% | -0.53% | | Las Animas | 7 | Attainment/Unclassifiable | 15,394 | 14,058 | -8.68% | -1.74% | | Pueblo | 7 | Attainment/Unclassifiable | 159,520 | 163,591 | 2.55% | 0.51% | | Alamosa | 8 | Attainment/Unclassifiable | 15,926 | 16,496 | 3.58% | 0.72% | | Conejos | | Attainment/Unclassifiable | 8,292 | 8,130 | -1.95% | -0.39% | | Costilla | 8 | | 3,527 | 3,584 | 1.62% | 0.32% | | Mineral | | Attainment/Unclassifiable | 704 | 726 | 3.13% | 0.63% | | Rio Grande | | Attainment/Unclassifiable | 12,018 | 11,543 | -3.95% | -0.79% | | Saguache | 8 | | 6,136 | 6,251 | 1.87% | 0.37% | | Archuleta | 9 | Attainment/Unclassifiable | 12,056 | 12,352 | 2.46% | 0.49% | | Dolores | 9 | Attainment/Unclassifiable | 2,065 | 1,978 | -4.21% | -0.84% | | La Plata | 9 | Attainment/Unclassifiable | 51,371 | 54,688 | 6.46% | 1,29% | | Montezuma | 9 | Attainment/Unclassifiable | 25,548 | 26,168 | 2.43% | 0.49% | | San Juan | 9 | Attainment/Unclassifiable | 708 | 701 | -0.99% | -0.20% | | Delta | 10 | Attainment/Unclassifiable | 30,878 | 29,979 | -2.91% | -0.58% | | Gunnison | 10 | Attainment/Unclassifiable | 15,379 | 16,067 | 4.47% | 0.89% | | Hinsdale | 10 | Attainment/Unclassifiable | 844 | 774 | -8.29% | -1.66% | | Montrose | 10 | Attainment/Unclassifiable | 41,194 | 40,946 | -0.60% | -0.12% | | Ouray | 10 | Attainment/Unclassifiable | 4,466 | 4,691 | 5.04% | 1.01% | | San Miguel | 10 | Attainment/Unclassifiable | 7,359 | 7,879 | 7.07% | 1.41% | | Garfield | 11 | Attainment/Unclassifiable | 56,094 | 58,095 | 3.57% | 0.71% | | Mesa | 11 | Attainment/Unclassifiable | 146,489 | 148,513 | 1.38% | 0.28% | | Moffat | 11 | Attainment/Unclassifiable | 13,812 | 12,937 | -6.34% | -1.27% | | Rio Blanco | 11 | Attainment/Unclassifiable | 6,669 | 6,571 | -1.47% | -0.29% | | Eagle | 12 | Attainment/Unclassifiable | 52,085 | 53,605 | 2.92% | 0.58% | | Grand | 12 | Attainment/Unclassifiable | 14,783 | 14,615 | -1.14% | -0.23% | | Jackson | 12 | Attainment/Unclassifiable | 1,385 | 1,356 | -2.09% | -0.42% | | Pitkin | 12 | Attainment/Unclassifiable | 17,156 | 17,787 | 3.68% | 0.74% | | Routt | 12 | Attainment/Unclassifiable | 23,450 | 24,130 | 2.90% | 0.58% | | Summit | 12 | Attainment/Unclassifiable | 28,065 | 30,257 | 7.81% | 1.56% | | Chaffee | 13 | Attainment/Unclassifiable | 17,803 | 18,658 | 4.80% | 0.96% | | Custer | 13 | Attainment/Unclassifiable | 4,275 | 4,445 | 3.98% | 0.80% | | Fremont | 13 | Attainment/Unclassifiable | 46,857 | 46,692 | -0.35% | -0.07% | | Lake | 13 | Attainment/Unclassifiable | 7,267 | 7,485 | 3.00% | 0.60% | | | NAA | Non-Attainment | 443,680 | 491,337 | 10.74% | 2.15% | | | NAA | Non-Attainment | 574,727 | 631,096 | 9.81% | 1.96% | | | NAA | Non-Attainment | 295,986 | 319,372 | 7.90% | 1.58% | | | NAA | Non-Attainment | 56,271 | 65,065 | 15.63% | 3.13% | | | NAA | Non-Attainment | 603,300 | 682,545 | 13.14% | 2.63% | | | NAA | Non-Attainment | 286,964 | 322,387 | 12.34% | 2.47% | | | | | | Water a company of the th | 5.58% | 1.12% | | | NAA | INon-Attainment | 535.625 | | | | | Jefferson | NAA
NAA | Non-Attainment
Non-Attainment | 535,625
300,524 | 565,524
333,577 | 11.00% | 2.20% | Top 5 Population Top 5 Annual Growth As shown in Table 3-3, of the five highest county populations in the state, four are within the DM/NFR. El Paso is represents the 2nd highest county population, however as stated above, all monitoring locations in AQCR 4 show compliance with the revised 8-hour standard. Also, of the five highest growth areas by population from 2010 to 2015, all five are in the current DM/NFR nonattainment area. Colorado Recommended 8-hour Ozone Designations Technical Support Document Page 90 of 91 ## **Summary Conclusions for Remainder of Colorado** The State recommends that the remainder of the State be designated as attainment/unclassifiable for the revised 2015 8-hour ozone standard. This recommendation is based on (1) monitoring information that indicates compliance with the revised standard (2) precursor emission levels that are presumed to not result in violations of the 2015 8-hour ozone standard, and (3) relatively low population levels.